Abstract:
In this paper, we study a dynamic reconstruction algorithm which reconstructs the unknown unbounded input and all unobservable phase coordinates from the results of measurements of part of the coordinates. An upper and a lower bound for the accuracy of the reconstruction is obtained. We determine the class of inputs for which the upper bound is uniform. We give a condition for optimally matching the algorithm parameters, ensuring the highest order of the upper bound and equating the orders of the upper and lower bounds. Thus, we establish the sharpness of the upper bound.
Citation:
A. S. Mart'yanov, “Estimates of the Rate of Convergence of a Dynamic Reconstruction Algorithm under Incomplete Information about the Phase State”, Mat. Zametki, 82:1 (2007), 64–74; Math. Notes, 82:1 (2007), 57–66
\Bibitem{Mar07}
\by A.~S.~Mart'yanov
\paper Estimates of the Rate of Convergence of a Dynamic Reconstruction Algorithm under Incomplete Information about the Phase State
\jour Mat. Zametki
\yr 2007
\vol 82
\issue 1
\pages 64--74
\mathnet{http://mi.mathnet.ru/mzm3754}
\crossref{https://doi.org/10.4213/mzm3754}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2374884}
\elib{https://elibrary.ru/item.asp?id=9518304}
\transl
\jour Math. Notes
\yr 2007
\vol 82
\issue 1
\pages 57--66
\crossref{https://doi.org/10.1134/80001434607070085}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249410700008}
Linking options:
https://www.mathnet.ru/eng/mzm3754
https://doi.org/10.4213/mzm3754
https://www.mathnet.ru/eng/mzm/v82/i1/p64
This publication is cited in the following 1 articles:
Vyacheslav I. Maksimov, “The methods of dynamical reconstruction of an input in a system of ordinary differential equations”, Journal of Inverse and Ill-posed Problems, 29:1 (2021), 125