Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 5, Pages 776–788
DOI: https://doi.org/10.4213/mzm3723
(Mi mzm3723)
 

This article is cited in 2 scientific papers (total in 2 papers)

Completeness and Basis Properties of Systems of Exponentials in Weighted Spaces $L^p(-\pi,\pi)$

A. A. Yukhimenko

M. V. Lomonosov Moscow State University
Full-text PDF (532 kB) Citations (2)
References:
Abstract: We consider the system of exponentials $e(\Lambda)=\{e^{i\lambda_nt}\}_{n\in\mathbb Z}$, where
$$ \lambda_n=n+\biggl(\frac{1+\alpha}p+l(|n|)\biggr)\operatorname{sign}n, $$
$l(t)$ is a slowly varying function, and $l(t)\to 0$, $t\to\infty$. We obtain an estimate for the generating function of the sequence $\{\lambda_n\}$ and, with its help, find a completeness criterion and a basis condition for the system $e(\Lambda)$ in the weight spaces $L^p(-\pi,\pi)$. We also study some special cases of the function $l(t)$.
Keywords: system of exponentials, completeness of a system of functions, the weight spaces $L^p(-\pi,\pi)$, Laplace transform, Cauchy's theorem, Riesz basis, generating function.
Received: 27.02.2006
Revised: 10.07.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 5, Pages 695–707
DOI: https://doi.org/10.1134/S0001434607050161
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. A. Yukhimenko, “Completeness and Basis Properties of Systems of Exponentials in Weighted Spaces $L^p(-\pi,\pi)$”, Mat. Zametki, 81:5 (2007), 776–788; Math. Notes, 81:5 (2007), 695–707
Citation in format AMSBIB
\Bibitem{Yuk07}
\by A.~A.~Yukhimenko
\paper Completeness and Basis Properties of Systems of Exponentials in Weighted Spaces $L^p(-\pi,\pi)$
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 5
\pages 776--788
\mathnet{http://mi.mathnet.ru/mzm3723}
\crossref{https://doi.org/10.4213/mzm3723}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2348829}
\zmath{https://zbmath.org/?q=an:1155.30001}
\elib{https://elibrary.ru/item.asp?id=9498107}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 5
\pages 695--707
\crossref{https://doi.org/10.1134/S0001434607050161}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247942500016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547268668}
Linking options:
  • https://www.mathnet.ru/eng/mzm3723
  • https://doi.org/10.4213/mzm3723
  • https://www.mathnet.ru/eng/mzm/v81/i5/p776
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025