Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 5, Pages 766–775
DOI: https://doi.org/10.4213/mzm3719
(Mi mzm3719)
 

On the Finiteness of the Number of Orbits on Quasihomogeneous $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds

E. V. Sharoiko

M. V. Lomonosov Moscow State University
References:
Abstract: We obtain an effective criterion for the finiteness of the number of orbits contained in the closure of a given $G$-orbit for the case of a rational linear action of the group $G:=(\mathbb C^*)^k\times SL_2(\mathbb C)$ on a finite-dimensional linear space as well as on the projectivization of such a space.
Keywords: the group $SL_2(\mathbb C)$, rational linear action, orbit, character lattice, Borel subgroup, analytic curve, irreducible algebraic variety.
Received: 03.11.2005
Revised: 30.08.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 5, Pages 686–694
DOI: https://doi.org/10.1134/S000143460705015X
Bibliographic databases:
UDC: 512.743.7
Language: Russian
Citation: E. V. Sharoiko, “On the Finiteness of the Number of Orbits on Quasihomogeneous $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds”, Mat. Zametki, 81:5 (2007), 766–775; Math. Notes, 81:5 (2007), 686–694
Citation in format AMSBIB
\Bibitem{Sha07}
\by E.~V.~Sharoiko
\paper On the Finiteness of the Number of Orbits on Quasihomogeneous $(\mathbb C^*)^k\times SL_2(\mathbb C)$-manifolds
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 5
\pages 766--775
\mathnet{http://mi.mathnet.ru/mzm3719}
\crossref{https://doi.org/10.4213/mzm3719}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2348828}
\zmath{https://zbmath.org/?q=an:1145.14038}
\elib{https://elibrary.ru/item.asp?id=9498106}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 5
\pages 686--694
\crossref{https://doi.org/10.1134/S000143460705015X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247942500015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547382455}
Linking options:
  • https://www.mathnet.ru/eng/mzm3719
  • https://doi.org/10.4213/mzm3719
  • https://www.mathnet.ru/eng/mzm/v81/i5/p766
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025