Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 4, Pages 507–514
DOI: https://doi.org/10.4213/mzm3693
(Mi mzm3693)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Buffer Phenomenon in One-Dimensional Piecewise Linear Mapping in Radiophysics

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (468 kB) Citations (1)
References:
Abstract: We study the problem of attractors of the two-dimensional mapping
$$ (u,v)\to(v,-(1-\mu)u-F(v)),\qquad F(v)=\begin{cases} \hphantom{-}q_1&\text{for }v>0, \\ \hphantom{-}0&\text{for }v=0, \\ -q_2&\text{for }v<0, \end{cases} $$
where $0<\mu\ll1$ and $q_1,q_2>0$. This mapping is the mathematical model of a self-excited oscillator with relay amplifier and a part of the long transmission line without distortions in the feedback circuit. We prove that, in the system under study, there coexist stable cycles with arbitrarily large periods as the parameter $\mu$ decreases properly. We also show that the total number of these cycles increases without bound as $\mu\to0$, i.e., the buffer phenomenon is realized.
Keywords: feedback circuit, boundary-value problem, attractor, stable (unstable) cycle, self-excited oscillator, buffer phenomenon, Lyapunov stability.
Received: 30.03.2005
Revised: 09.02.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 4, Pages 449–455
DOI: https://doi.org/10.1134/S0001434607030212
Bibliographic databases:
UDC: 517.926
Language: Russian
Citation: S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “The Buffer Phenomenon in One-Dimensional Piecewise Linear Mapping in Radiophysics”, Mat. Zametki, 81:4 (2007), 507–514; Math. Notes, 81:4 (2007), 449–455
Citation in format AMSBIB
\Bibitem{GlyKolRoz07}
\by S.~D.~Glyzin, A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper The Buffer Phenomenon in One-Dimensional Piecewise Linear Mapping in Radiophysics
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 4
\pages 507--514
\mathnet{http://mi.mathnet.ru/mzm3693}
\crossref{https://doi.org/10.4213/mzm3693}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2351856}
\zmath{https://zbmath.org/?q=an:1135.37337}
\elib{https://elibrary.ru/item.asp?id=9486219}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 4
\pages 449--455
\crossref{https://doi.org/10.1134/S0001434607030212}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246269000021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248330698}
Linking options:
  • https://www.mathnet.ru/eng/mzm3693
  • https://doi.org/10.4213/mzm3693
  • https://www.mathnet.ru/eng/mzm/v81/i4/p507
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:422
    Full-text PDF :176
    References:57
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024