Abstract:
We consider uniqueness problems for multiple Walsh series convergent on binary cubes on a multidimensional binary group. We find conditions under which a given finite or countable set is a set of uniqueness.
Keywords:
multiple Walsh series, convergence on binary cubes, multidimensional binary group, uniqueness group, uniqueness set, index set.
Citation:
N. S. Moreva, “Uniqueness of Multiple Walsh Series for the Convergence on Binary Cubes”, Mat. Zametki, 81:4 (2007), 586–598; Math. Notes, 81:4 (2007), 518–528
\Bibitem{Mor07}
\by N.~S.~Moreva
\paper Uniqueness of Multiple Walsh Series for the Convergence on Binary Cubes
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 4
\pages 586--598
\mathnet{http://mi.mathnet.ru/mzm3701}
\crossref{https://doi.org/10.4213/mzm3701}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2352024}
\zmath{https://zbmath.org/?q=an:1136.42307}
\elib{https://elibrary.ru/item.asp?id=9486227}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 4
\pages 518--528
\crossref{https://doi.org/10.1134/S0001434607030297}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246269000029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248373203}
Linking options:
https://www.mathnet.ru/eng/mzm3701
https://doi.org/10.4213/mzm3701
https://www.mathnet.ru/eng/mzm/v81/i4/p586
This publication is cited in the following 2 articles:
M. G. Plotnikov, “Quasi-measures on the group Gm, Dirichlet sets, and uniqueness problems for multiple Walsh series”, Sb. Math., 201:12 (2010), 1837–1862
N. S. Polyakova, “O edinstvennosti ryadov po sisteme kharakterov diadicheskoi gruppy”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 9:2 (2009), 38–44