Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 4, Pages 569–585
DOI: https://doi.org/10.4213/mzm3700
(Mi mzm3700)
 

This article is cited in 7 scientific papers (total in 7 papers)

Estimates of the Solutions of Difference-Differential Equations of Neutral Type

A. A. Lesnykh

M. V. Lomonosov Moscow State University
Full-text PDF (589 kB) Citations (7)
References:
Abstract: In this paper, we study scalar difference-differential equations of neutral type of general form
$$ \sum_{j=0}^m\int_0^hu^{(j)}(t-\theta)\,d\sigma_j(\theta)=0, \qquad t>h, $$
where the $\sigma_j(\theta)$ are functions of bounded variation. For the solutions of this equation, we obtain the following estimate:
$$ \|u(t)\|_{W_2^m(T,T+h)} \le C T^{q-1}e^{\varkappa T}\|u(t)\|_{W_2^m(0,h)}, $$
where $C$ is a constant independent of $u_0(t)$ and the values of $q$ and $\varkappa$ are determined by the properties of the characteristic determinant of this equation. Earlier, this estimate was proved for equations of less general form. For example, for piecewise constant functions $\sigma_j(\theta)$ or for the case in which the function $\sigma_m(\theta)$ has jumps at both points $\theta=0$ and $\theta=h$. In the present paper, this estimate is obtained under the only condition that $\sigma_m(\theta)$ experiences a jump at the point $\theta=0$; this condition is necessary for the correct solvability of the initial-value problem.
Keywords: difference-differential equation of neutral type, equation with delay, initial-value problem, entire function, Laplace transform, characteristic determinant.
Received: 20.11.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 4, Pages 503–517
DOI: https://doi.org/10.1134/S0001434607030285
Bibliographic databases:
UDC: 517.929
Language: Russian
Citation: A. A. Lesnykh, “Estimates of the Solutions of Difference-Differential Equations of Neutral Type”, Mat. Zametki, 81:4 (2007), 569–585; Math. Notes, 81:4 (2007), 503–517
Citation in format AMSBIB
\Bibitem{Les07}
\by A.~A.~Lesnykh
\paper Estimates of the Solutions of Difference-Differential Equations of Neutral Type
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 4
\pages 569--585
\mathnet{http://mi.mathnet.ru/mzm3700}
\crossref{https://doi.org/10.4213/mzm3700}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2352023}
\zmath{https://zbmath.org/?q=an:1139.34057}
\elib{https://elibrary.ru/item.asp?id=9486226}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 4
\pages 503--517
\crossref{https://doi.org/10.1134/S0001434607030285}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246269000028}
\elib{https://elibrary.ru/item.asp?id=13562044}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248324308}
Linking options:
  • https://www.mathnet.ru/eng/mzm3700
  • https://doi.org/10.4213/mzm3700
  • https://www.mathnet.ru/eng/mzm/v81/i4/p569
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:528
    Full-text PDF :209
    References:119
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024