Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 1, Pages 112–124
DOI: https://doi.org/10.4213/mzm3521
(Mi mzm3521)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the Elementary Obstruction to the Existence of Rational Points

A. N. Skorobogatovab

a Institute for Information Transmission Problems, Russian Academy of Sciences
b Imperial College, Department of Mathematics
Full-text PDF (547 kB) Citations (7)
References:
Abstract: The differentials of a certain spectral sequence converging to the Brauer–Grothendieck group of an algebraic variety $X$ over an arbitrary field are interpreted as the $\cup$-product with the class of the so-called “elementary obstruction.” This class is closely related to the cohomology class of the first-degree Albanese variety of $X$. If $X$ is a homogeneous space of an algebraic group, then the elementary obstruction can be described explicitly in terms of natural cohomological invariants of $X$. This reduces the calculation of the Brauer–Grothendieck group to the computation of a certain pairing in the Galois cohomology.
Keywords: Brauer–Grothendieck group, algebraic variety over a field, elementary obstruction to the existence of rational points, Albanese variety, Picard variety, Galois cohomology.
Received: 21.10.2005
Revised: 04.07.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 1, Pages 97–107
DOI: https://doi.org/10.1134/S0001434607010099
Bibliographic databases:
UDC: 512.74
Language: Russian
Citation: A. N. Skorobogatov, “On the Elementary Obstruction to the Existence of Rational Points”, Mat. Zametki, 81:1 (2007), 112–124; Math. Notes, 81:1 (2007), 97–107
Citation in format AMSBIB
\Bibitem{Sko07}
\by A.~N.~Skorobogatov
\paper On the Elementary Obstruction to the Existence of Rational Points
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 1
\pages 112--124
\mathnet{http://mi.mathnet.ru/mzm3521}
\crossref{https://doi.org/10.4213/mzm3521}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333868}
\zmath{https://zbmath.org/?q=an:1134.14012}
\elib{https://elibrary.ru/item.asp?id=9429669}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 1
\pages 97--107
\crossref{https://doi.org/10.1134/S0001434607010099}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244695200009}
\elib{https://elibrary.ru/item.asp?id=13541175}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947513603}
Linking options:
  • https://www.mathnet.ru/eng/mzm3521
  • https://doi.org/10.4213/mzm3521
  • https://www.mathnet.ru/eng/mzm/v81/i1/p112
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:504
    Full-text PDF :261
    References:66
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024