Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 1, Pages 112–124
DOI: https://doi.org/10.4213/mzm3521
(Mi mzm3521)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the Elementary Obstruction to the Existence of Rational Points

A. N. Skorobogatovab

a Institute for Information Transmission Problems, Russian Academy of Sciences
b Imperial College, Department of Mathematics
Full-text PDF (547 kB) Citations (7)
References:
Abstract: The differentials of a certain spectral sequence converging to the Brauer–Grothendieck group of an algebraic variety X over an arbitrary field are interpreted as the -product with the class of the so-called “elementary obstruction.” This class is closely related to the cohomology class of the first-degree Albanese variety of X. If X is a homogeneous space of an algebraic group, then the elementary obstruction can be described explicitly in terms of natural cohomological invariants of X. This reduces the calculation of the Brauer–Grothendieck group to the computation of a certain pairing in the Galois cohomology.
Keywords: Brauer–Grothendieck group, algebraic variety over a field, elementary obstruction to the existence of rational points, Albanese variety, Picard variety, Galois cohomology.
Received: 21.10.2005
Revised: 04.07.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 1, Pages 97–107
DOI: https://doi.org/10.1134/S0001434607010099
Bibliographic databases:
UDC: 512.74
Language: Russian
Citation: A. N. Skorobogatov, “On the Elementary Obstruction to the Existence of Rational Points”, Mat. Zametki, 81:1 (2007), 112–124; Math. Notes, 81:1 (2007), 97–107
Citation in format AMSBIB
\Bibitem{Sko07}
\by A.~N.~Skorobogatov
\paper On the Elementary Obstruction to the Existence of Rational Points
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 1
\pages 112--124
\mathnet{http://mi.mathnet.ru/mzm3521}
\crossref{https://doi.org/10.4213/mzm3521}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333868}
\zmath{https://zbmath.org/?q=an:1134.14012}
\elib{https://elibrary.ru/item.asp?id=9429669}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 1
\pages 97--107
\crossref{https://doi.org/10.1134/S0001434607010099}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244695200009}
\elib{https://elibrary.ru/item.asp?id=13541175}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947513603}
Linking options:
  • https://www.mathnet.ru/eng/mzm3521
  • https://doi.org/10.4213/mzm3521
  • https://www.mathnet.ru/eng/mzm/v81/i1/p112
  • This publication is cited in the following 7 articles:
    1. Ma Q., “Brauer Class Over the Picard Scheme of Totally Degenerate Stable Curves”, Math. Z., 298:3-4 (2021), 1641–1652  crossref  mathscinet  isi
    2. Harari D., Szamuely T., “Galois sections for abelianized fundamental groups”, Math. Ann., 344:4 (2009), 779–800  crossref  mathscinet  zmath  isi  elib  scopus
    3. Beauville A., “On the Brauer group of Enriques surfaces”, Math. Res. Lett., 16:5-6 (2009), 927–934  crossref  mathscinet  zmath  isi  elib  scopus
    4. Harari D., Szamuely T., “Local-global principles for 1-motives”, Duke Math. J., 143:3 (2008), 531–557  crossref  mathscinet  zmath  isi  elib  scopus
    5. Wittenberg O., “On Albanese torsors and the elementary obstruction”, Math. Ann., 340:4 (2008), 805–838  crossref  mathscinet  zmath  isi  elib  scopus
    6. Borovoi M., Colliot-Thélène J.-L., Skorobogatov A. N., “The elementary obstruction and homogeneous spaces”, Duke Math. J., 141:2 (2008), 321–364  crossref  mathscinet  zmath  isi  elib  scopus
    7. Skorobogatov A. N., Zarhin Yu. G., “A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces”, J. Algebraic Geom., 17:3 (2008), 481–502  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:539
    Full-text PDF :276
    References:76
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025