Abstract:
The differentials of a certain spectral sequence converging to the Brauer–Grothendieck group of an algebraic variety X over an arbitrary field are interpreted as the ∪-product with the class of the so-called “elementary obstruction.” This class is closely related to the cohomology class of the first-degree Albanese variety of X. If X is a homogeneous space of an algebraic group, then the elementary obstruction can be described explicitly in terms of natural cohomological invariants of X. This reduces the calculation of the Brauer–Grothendieck group to the computation of a certain pairing in the Galois cohomology.
Keywords:
Brauer–Grothendieck group, algebraic variety over a field, elementary obstruction to the existence of rational points, Albanese variety, Picard variety, Galois cohomology.
Citation:
A. N. Skorobogatov, “On the Elementary Obstruction to the Existence of Rational Points”, Mat. Zametki, 81:1 (2007), 112–124; Math. Notes, 81:1 (2007), 97–107
\Bibitem{Sko07}
\by A.~N.~Skorobogatov
\paper On the Elementary Obstruction to the Existence of Rational Points
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 1
\pages 112--124
\mathnet{http://mi.mathnet.ru/mzm3521}
\crossref{https://doi.org/10.4213/mzm3521}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333868}
\zmath{https://zbmath.org/?q=an:1134.14012}
\elib{https://elibrary.ru/item.asp?id=9429669}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 1
\pages 97--107
\crossref{https://doi.org/10.1134/S0001434607010099}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244695200009}
\elib{https://elibrary.ru/item.asp?id=13541175}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947513603}
Linking options:
https://www.mathnet.ru/eng/mzm3521
https://doi.org/10.4213/mzm3521
https://www.mathnet.ru/eng/mzm/v81/i1/p112
This publication is cited in the following 7 articles:
Ma Q., “Brauer Class Over the Picard Scheme of Totally Degenerate Stable Curves”, Math. Z., 298:3-4 (2021), 1641–1652
Harari D., Szamuely T., “Galois sections for abelianized fundamental groups”, Math. Ann., 344:4 (2009), 779–800
Beauville A., “On the Brauer group of Enriques surfaces”, Math. Res. Lett., 16:5-6 (2009), 927–934
Harari D., Szamuely T., “Local-global principles for 1-motives”, Duke Math. J., 143:3 (2008), 531–557
Wittenberg O., “On Albanese torsors and the elementary obstruction”, Math. Ann., 340:4 (2008), 805–838
Borovoi M., Colliot-Thélène J.-L., Skorobogatov A. N., “The elementary obstruction and homogeneous spaces”, Duke Math. J., 141:2 (2008), 321–364
Skorobogatov A. N., Zarhin Yu. G., “A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces”, J. Algebraic Geom., 17:3 (2008), 481–502