Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2007, Volume 81, Issue 1, Pages 98–111
DOI: https://doi.org/10.4213/mzm3520
(Mi mzm3520)
 

This article is cited in 4 scientific papers (total in 4 papers)

General Maximal Inequalities Related to the Strong Law of Large Numbers

Sh. Leventala, H. Salehia, S. A. Chobanyanb

a Michigan State University
b Muskhelishvili Institute of Computational Mathematics
Full-text PDF (570 kB) Citations (4)
References:
Abstract: For a sequence $(\xi_n)$ of random variables, we obtain maximal inequalities from which we can derive conditions for the a.s. convergence to zero of normalized differences
$$ \frac{1}{2^n} \biggl(\max_{2^n\le k<2^{n+1}} \biggl|\sum^k_{i=2^n}\xi_i\biggr|-\biggl|\sum_{i=2^n}^{2^{n+1}-1}\xi_i\biggr|\biggr). $$
The convergence to zero of this sequence leads to the strong law of large numbers (SLLN). In the special case of quasistationary sequences, we obtain a sufficient condition for the SLLN, which is an improvement on the well-known Móricz conditions.
Keywords: strong law of large numbers, maximal inequality, quasistationary random sequence, Banach space, Bochner measurability, Jensen's inequality.
Received: 04.09.2004
Revised: 08.08.2006
English version:
Mathematical Notes, 2007, Volume 81, Issue 1, Pages 85–96
DOI: https://doi.org/10.1134/S0001434607010087
Bibliographic databases:
UDC: 519.2+517.51+517.98
Language: Russian
Citation: Sh. Levental, H. Salehi, S. A. Chobanyan, “General Maximal Inequalities Related to the Strong Law of Large Numbers”, Mat. Zametki, 81:1 (2007), 98–111; Math. Notes, 81:1 (2007), 85–96
Citation in format AMSBIB
\Bibitem{LevSalCho07}
\by Sh.~Levental, H.~Salehi, S.~A.~Chobanyan
\paper General Maximal Inequalities Related to the Strong Law of Large Numbers
\jour Mat. Zametki
\yr 2007
\vol 81
\issue 1
\pages 98--111
\mathnet{http://mi.mathnet.ru/mzm3520}
\crossref{https://doi.org/10.4213/mzm3520}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2333867}
\zmath{https://zbmath.org/?q=an:1129.60017}
\elib{https://elibrary.ru/item.asp?id=9429668}
\transl
\jour Math. Notes
\yr 2007
\vol 81
\issue 1
\pages 85--96
\crossref{https://doi.org/10.1134/S0001434607010087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244695200008}
\elib{https://elibrary.ru/item.asp?id=13534778}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947540068}
Linking options:
  • https://www.mathnet.ru/eng/mzm3520
  • https://doi.org/10.4213/mzm3520
  • https://www.mathnet.ru/eng/mzm/v81/i1/p98
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:522
    Full-text PDF :207
    References:85
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024