Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 80, Issue 5, Pages 668–682
DOI: https://doi.org/10.4213/mzm3076
(Mi mzm3076)
 

This article is cited in 15 scientific papers (total in 15 papers)

Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator

S. A. Buterin

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: We consider a one-dimensional perturbation of the convolution operator. We study the inverse reconstruction problem for the convolution component using the characteristic numbers under the assumption that the perturbation summand is known a priori. The problem is reduced to the solution of the so-called basic nonlinear integral equation with singularity. We prove the global solvability of this nonlinear equation. On the basis of these results, we prove a uniqueness theorem and obtain necessary and sufficient conditions for the solvability of the inverse problem.
Received: 04.10.2004
English version:
Mathematical Notes, 2006, Volume 80, Issue 5, Pages 631–644
DOI: https://doi.org/10.1007/s11006-006-0184-6
Bibliographic databases:
UDC: 517.984
Language: Russian
Citation: S. A. Buterin, “Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator”, Mat. Zametki, 80:5 (2006), 668–682; Math. Notes, 80:5 (2006), 631–644
Citation in format AMSBIB
\Bibitem{But06}
\by S.~A.~Buterin
\paper Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 5
\pages 668--682
\mathnet{http://mi.mathnet.ru/mzm3076}
\crossref{https://doi.org/10.4213/mzm3076}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2311581}
\zmath{https://zbmath.org/?q=an:1134.47003}
\elib{https://elibrary.ru/item.asp?id=9309623}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 5
\pages 631--644
\crossref{https://doi.org/10.1007/s11006-006-0184-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243368900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845624292}
Linking options:
  • https://www.mathnet.ru/eng/mzm3076
  • https://doi.org/10.4213/mzm3076
  • https://www.mathnet.ru/eng/mzm/v80/i5/p668
  • This publication is cited in the following 15 articles:
    1. S. A. Buterin, “On the Uniform Stability of Recovering Sine-Type Functions with Asymptotically Separated Zeros”, Math. Notes, 111:3 (2022), 343–355  mathnet  crossref  crossref  mathscinet
    2. S. A. Buterin, “Inverse Spectral Problem for Integro-Differential Sturm–Liouville Operators with Discontinuity Conditions”, J Math Sci, 263:6 (2022), 741  crossref
    3. Buterin S., “Uniform Stability of the Inverse Spectral Problem For a Convolution Integro-Differential Operator”, Appl. Math. Comput., 390 (2021), 125592  crossref  mathscinet  isi
    4. Buterin S., “Uniform Full Stability of Recovering Convolutional Perturbation of the Sturm-Liouville Operator From Thespectrum”, J. Differ. Equ., 282 (2021), 67–103  crossref  mathscinet  isi
    5. Sergey Buterin, Trends in Mathematics, Transmutation Operators and Applications, 2020, 337  crossref
    6. Buterin S., Yurko V., “Inverse Problems For Second Order Integral and Integro-Differential Operators”, Anal. Math. Phys., 9:1 (2019), 555–564  crossref  mathscinet  isi  scopus
    7. Buterin S., “An Inverse Spectral Problem For Sturm-Liouville-Type Integro-Differential Operators With Robin Boundary Conditions”, Tamkang J. Math., 50:3, SI (2019), 207–221  crossref  mathscinet  isi
    8. Buterin S.A., Vasiliev S.V., “On Uniqueness of Recovering the Convolution Integro-Differential Operator From the Spectrum of Its Non-Smooth One-Dimensional Perturbation”, Bound. Value Probl., 2018, 55  crossref  mathscinet  isi  scopus
    9. Yurko V., “Inverse Problems For Arbitrary Order Integral and Integro-Differential Operators”, Results Math., 73:2 (2018), UNSP 72  crossref  mathscinet  isi  scopus
    10. Buterin S., Malyugina M., “On Global Solvability and Uniform Stability of One Nonlinear Integral Equation”, Results Math., 73:3 (2018), UNSP 117  crossref  mathscinet  isi  scopus
    11. S. A. Buterin, “Obratnaya spektralnaya zadacha dlya integro-differentsialnykh operatorov Shturma–Liuvillya s usloviyami razryva”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 64, no. 3, Rossiiskii universitet druzhby narodov, M., 2018, 427–458  mathnet  crossref
    12. Buterin S.A., Pikula M., Yurko V.A., “Sturm-Liouville Differential Operators With Deviating Argument”, Tamkang J. Math., 48:1 (2017), 61–71  crossref  mathscinet  zmath  isi  scopus
    13. V. A. Yurko, “Inverse Problems for First-Order Integro-Differential Operators”, Math. Notes, 100:6 (2016), 876–882  mathnet  crossref  crossref  mathscinet  isi  elib
    14. Buterin S.A., Choque Rivero A.E., “on Inverse Problem For a Convolution Integro-Differential Operator With Robin Boundary Conditions”, Appl. Math. Lett., 48 (2015), 150–155  crossref  mathscinet  zmath  isi  elib  scopus
    15. Buterin S.A., “On the reconstruction of a convolution perturbation of the Sturm-Liouville operator from the spectrum”, Differ. Equ., 46:1 (2010), 150–154  crossref  mathscinet  zmath  isi  elib  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:841
    Full-text PDF :374
    References:98
    First page:3
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025