Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 80, Issue 5, Pages 668–682
DOI: https://doi.org/10.4213/mzm3076
(Mi mzm3076)
 

This article is cited in 15 scientific papers (total in 15 papers)

Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator

S. A. Buterin

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: We consider a one-dimensional perturbation of the convolution operator. We study the inverse reconstruction problem for the convolution component using the characteristic numbers under the assumption that the perturbation summand is known a priori. The problem is reduced to the solution of the so-called basic nonlinear integral equation with singularity. We prove the global solvability of this nonlinear equation. On the basis of these results, we prove a uniqueness theorem and obtain necessary and sufficient conditions for the solvability of the inverse problem.
Received: 04.10.2004
English version:
Mathematical Notes, 2006, Volume 80, Issue 5, Pages 631–644
DOI: https://doi.org/10.1007/s11006-006-0184-6
Bibliographic databases:
UDC: 517.984
Language: Russian
Citation: S. A. Buterin, “Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator”, Mat. Zametki, 80:5 (2006), 668–682; Math. Notes, 80:5 (2006), 631–644
Citation in format AMSBIB
\Bibitem{But06}
\by S.~A.~Buterin
\paper Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 5
\pages 668--682
\mathnet{http://mi.mathnet.ru/mzm3076}
\crossref{https://doi.org/10.4213/mzm3076}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2311581}
\zmath{https://zbmath.org/?q=an:1134.47003}
\elib{https://elibrary.ru/item.asp?id=9309623}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 5
\pages 631--644
\crossref{https://doi.org/10.1007/s11006-006-0184-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243368900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845624292}
Linking options:
  • https://www.mathnet.ru/eng/mzm3076
  • https://doi.org/10.4213/mzm3076
  • https://www.mathnet.ru/eng/mzm/v80/i5/p668
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:762
    Full-text PDF :343
    References:81
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024