Abstract:
In this paper, the method of matching asymptotic expansions is used to construct an asymptotics (in a small parameter) of the eigenvalues and eigenfunctions of the Laplace operator in a domain when the boundary-condition type changes on a narrow flattened strip, provided that on the narrow strip of the boundary a Neumann condition is given and on the remaining part of the boundary a Dirichlet condition is given. The width of the strip is taken as the small parameter.
Citation:
M. Yu. Planida, “Asymptotics of the Eigenelements of the Laplace Operator when the Boundary-Condition Type Changes on a Narrow Flattened Strip”, Mat. Zametki, 75:2 (2004), 236–252; Math. Notes, 75:2 (2004), 213–228
\Bibitem{Pla04}
\by M.~Yu.~Planida
\paper Asymptotics of the Eigenelements of the Laplace Operator when the Boundary-Condition Type Changes on a Narrow Flattened Strip
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 2
\pages 236--252
\mathnet{http://mi.mathnet.ru/mzm30}
\crossref{https://doi.org/10.4213/mzm30}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2054555}
\zmath{https://zbmath.org/?q=an:1125.35392}
\elib{https://elibrary.ru/item.asp?id=5976303}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 2
\pages 213--228
\crossref{https://doi.org/10.1023/B:MATN.0000015037.16768.60}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220006100022}
Linking options:
https://www.mathnet.ru/eng/mzm30
https://doi.org/10.4213/mzm30
https://www.mathnet.ru/eng/mzm/v75/i2/p236
This publication is cited in the following 3 articles:
E. Bonnetier, Charles Dapogny, Michael S. Vogelius, “Small perturbations in the type of boundary conditions for an elliptic operator”, Journal de Mathématiques Pures et Appliquées, 167 (2022), 101
R. R. Gadyl'shin, E. A. Shishkina, “On Friedrichs inequalities for a disk”, Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 44–58
M. Yu. Planida, “Asymptotics of the eigenelements of the Laplacian with singular perturbations of boundary conditions on narrow and thin sets”, Sb. Math., 196:5 (2005), 703–741