Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 2, Pages 222–235
DOI: https://doi.org/10.4213/mzm29
(Mi mzm29)
 

This article is cited in 5 scientific papers (total in 5 papers)

Partial Convexity

V. G. Naidenko

Institute of Mathematics, National Academy of Sciences of the Republic of Belarus
Full-text PDF (234 kB) Citations (5)
References:
Abstract: We study OCOC-convexity, which is defined by the intersection of conic semispaces of partial convexity. We investigate an optimization problem for OCOC-convex sets and prove a Krein–Milman type theorem for OCOC-convexity. The relationship between OCOC-convex and functionally convex sets is studied. Topological and numerical aspects, as well as separability properties are described. An upper estimate for the Carathéodory number for OCOC-convexity is found. On the other hand, it happens that the Helly and the Radon number for OCOC-convexity are infinite. We prove that the OCOC-convex hull of any finite set of points is the union of finitely many polyhedra.
Received: 12.07.2002
English version:
Mathematical Notes, 2004, Volume 75, Issue 2, Pages 202–212
DOI: https://doi.org/10.1023/B:MATN.0000015036.94515.c0
Bibliographic databases:
UDC: 514+681.3
Language: Russian
Citation: V. G. Naidenko, “Partial Convexity”, Mat. Zametki, 75:2 (2004), 222–235; Math. Notes, 75:2 (2004), 202–212
Citation in format AMSBIB
\Bibitem{Nai04}
\by V.~G.~Naidenko
\paper Partial Convexity
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 2
\pages 222--235
\mathnet{http://mi.mathnet.ru/mzm29}
\crossref{https://doi.org/10.4213/mzm29}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2054554}
\zmath{https://zbmath.org/?q=an:1111.52002}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 2
\pages 202--212
\crossref{https://doi.org/10.1023/B:MATN.0000015036.94515.c0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220006100021}
Linking options:
  • https://www.mathnet.ru/eng/mzm29
  • https://doi.org/10.4213/mzm29
  • https://www.mathnet.ru/eng/mzm/v75/i2/p222
  • This publication is cited in the following 5 articles:
    1. David Flores-Peñaloza, Mario A. Lopez, Nestaly Marín, David Orden, “An efficient algorithm for identifying rainbow ortho-convex 4-sets in k-colored point sets”, Information Processing Letters, 189 (2025), 106551  crossref
    2. V. G. Naidenko, “Topology of directional convexity”, Vescì Akademìì navuk Belarusì. Seryâ fizika-matematyčnyh navuk, 56:4 (2020), 408  crossref
    3. A. M. Dulliev, “Properties of Connected Ortho-convex Sets in the Plane”, Math. Notes, 101:3 (2017), 443–459  mathnet  crossref  crossref  mathscinet  isi  elib
    4. A. M. Dulliev, “Two Structures Based on Convexities on the 2-Sphere”, Math. Notes, 102:2 (2017), 156–163  mathnet  crossref  crossref  mathscinet  isi  elib
    5. V. G. Naidenko, “Contractibility of Half-Spaces of Partial Convexity”, Math. Notes, 85:6 (2009), 868–876  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :195
    References:38
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025