Abstract:
We obtain asymptotic formulas
for
the solutions
of
the one-dimensional Schrödinger equation
$-y''+q(x)y=\nobreak 0$
with oscillating potential
$q(x)=x^\beta P(x^{1+\alpha})+cx^{-2}$
as
$x\to+\nobreak \infty$.
The real parameters $\alpha$
and $\beta$
satisfy
the inequalities
$\beta-\alpha\ge\nobreak -1$,
$2\alpha-\beta>\nobreak 0$
and $c$
is
an arbitrary real constant.
The real function $P(x)$
is either
periodic
with period $T$,
or
a trigonometric
polynomial.
To construct the asymptotics,
we apply
the ideas
of the averaging method
and use
Levinson's fundamental theorem.
Citation:
P. N. Nesterov, “Construction of the Asymptotics of the Solutions
of the One-Dimensional Schrödinger Equation
with Rapidly Oscillating Potential”, Mat. Zametki, 80:2 (2006), 240–250; Math. Notes, 80:2 (2006), 233–243
\Bibitem{Nes06}
\by P.~N.~Nesterov
\paper Construction of the Asymptotics of the Solutions
of the One-Dimensional Schr\"odinger Equation
with Rapidly Oscillating Potential
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 2
\pages 240--250
\mathnet{http://mi.mathnet.ru/mzm2805}
\crossref{https://doi.org/10.4213/mzm2805}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2281376}
\zmath{https://zbmath.org/?q=an:1117.34051}
\elib{https://elibrary.ru/item.asp?id=9274850}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 2
\pages 233--243
\crossref{https://doi.org/10.1007/s11006-006-0132-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240278000032}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747513242}
Linking options:
https://www.mathnet.ru/eng/mzm2805
https://doi.org/10.4213/mzm2805
https://www.mathnet.ru/eng/mzm/v80/i2/p240
This publication is cited in the following 18 articles:
Oskar A. Sultanov, “Resonances in nonlinear systems with a decaying chirped-frequency excitation and noise”, Communications in Nonlinear Science and Numerical Simulation, 145 (2025), 108713
N. F. Valeev, A. Eskermesuly, Ya. T. Sultanaev, “Asimptotika reshenii sistemy differentsialnykh uravnenii
s bystroostsilliruyuschimi koeffitsientami”, Matem. zametki, 117:3 (2025), 468–473
N. F. Valeev, È. A. Nazirova, Ya. T. Sultanaev, “Construction of asymptotics of solutions to the Sturm–Liouville differential equations in the class of oscillating coefficients”, Moscow University Mathematics Bulletin, 78:5 (2023), 253–257
Oskar A. Sultanov, “Resonances in asymptotically autonomous systems with a decaying chirped-frequency excitation”, DCDS-B, 28:3 (2023), 1719
O. A. Sultanov, “Asymptotic Analysis of Systems with Damped Oscillatory Perturbations”, J Math Sci, 269:1 (2023), 111
L. N. Valeeva, È. A. Nazirova, Ya. T. Sultanaev, “On a Method for Studying the Asymptotics of Solutions of Sturm–Liouville Differential Equations with Rapidly Oscillating Coefficients”, Math. Notes, 112:6 (2022), 1059–1064
O. A. Sultanov, “Capture Into Resonance in Nonlinear Oscillatory Systems with Decaying Perturbations”, J Math Sci, 262:3 (2022), 374
Sultanov O.A., “Bifurcations in Asymptotically Autonomous Hamiltonian Systems Under Oscillatory Perturbations”, Discret. Contin. Dyn. Syst., 41:12 (2021), 5943–5978
Nesterov P., “Asymptotic Integration of a Certain Second-Order Linear Delay Differential Equation”, Mon.heft. Math., 182:1 (2017), 77–98
P. N. Nesterov, “Asimptoticheskoe integrirovanie odnogo lineinogo differentsialnogo uravneniya vtorogo poryadka s zapazdyvaniem”, Model. i analiz inform. sistem, 23:5 (2016), 635–656
P. N. Nesterov, “Parametricheskii rezonans v garmonicheskom ostsillyatore s peremennoi chastotoi sobstvennykh kolebanii”, Model. i analiz inform. sistem, 20:3 (2013), 5–28
Nesterov P., “Appearance of New Parametric Resonances in Time-Dependent Harmonic Oscillator”, Results Math., 64:3-4 (2013), 229–251
Davies E.B., “Singular Schrodinger Operators in One Dimension”, Mathematika, 59:1 (2013), 141–159
Nesterov P., “On Eigenvalues of the One-Dimensional Dirac Operator with Oscillatory Decreasing Potential”, Math. Phys. Anal. Geom., 15:3 (2012), 257–298
P. N. Nesterov, “Ob ustoichivosti reshenii nekotorykh uravnenii iz klassa adiabaticheskikh ostsillyatorov”, Model. i analiz inform. sistem, 15:2 (2008), 10–17
Nesterov P. N., “Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing coefficients”, Differ. Equ., 43:6 (2007), 745–756
P. N. Nesterov, “Asimptoticheskoe predstavlenie reshenii sistem lineinykh raznostnykh uravnenii i metod usredneniya”, Model. i analiz inform. sistem, 14:2 (2007), 63–67