Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 80, Issue 2, Pages 231–239
DOI: https://doi.org/10.4213/mzm2804
(Mi mzm2804)
 

This article is cited in 2 scientific papers (total in 2 papers)

An Infinite-Dimensional Generalization of the Jung theorem

V. Nguyen-Khaca, K. Nguyen-Vanb

a Institute of Mathematics, National Centre for Natural Science and Technology
b Hanoi Pedagogical institute
Full-text PDF (413 kB) Citations (2)
References:
Abstract: A complete characterization of the extremal subsets of Hilbert spaces, which is an infinite-dimensional generalization of the classical Jung theorem, is given. The behavior of the set of points near the Chebyshev sphere of such a subset with respect to the Kuratowski and Hausdorff measures of noncompactness is investigated.
Keywords: Jung theorem, Jung constant, extremal subset of a Hilbert space, Chebyshev sphere, Kuratowski and Hausdorff noncompactness measures.
Received: 07.06.2005
English version:
Mathematical Notes, 2006, Volume 80, Issue 2, Pages 224–243
DOI: https://doi.org/10.1007/s11006-006-0131-6
Bibliographic databases:
UDC: 514.17
Language: Russian
Citation: V. Nguyen-Khac, K. Nguyen-Van, “An Infinite-Dimensional Generalization of the Jung theorem”, Mat. Zametki, 80:2 (2006), 231–239; Math. Notes, 80:2 (2006), 224–243
Citation in format AMSBIB
\Bibitem{NguNgu06}
\by V.~Nguyen-Khac, K.~Nguyen-Van
\paper An Infinite-Dimensional Generalization
of the Jung theorem
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 2
\pages 231--239
\mathnet{http://mi.mathnet.ru/mzm2804}
\crossref{https://doi.org/10.4213/mzm2804}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2281375}
\zmath{https://zbmath.org/?q=an:05155519}
\elib{https://elibrary.ru/item.asp?id=9274849}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 2
\pages 224--243
\crossref{https://doi.org/10.1007/s11006-006-0131-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240278000031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747485287}
Linking options:
  • https://www.mathnet.ru/eng/mzm2804
  • https://doi.org/10.4213/mzm2804
  • https://www.mathnet.ru/eng/mzm/v80/i2/p231
  • This publication is cited in the following 2 articles:
    1. A. R. Alimov, I. G. Tsar'kov, “Chebyshev centres, Jung constants, and their applications”, Russian Math. Surveys, 74:5 (2019), 775–849  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Berckmoes B., “On the Hausdorff measure of noncompactness for the parameterized Prokhorov metric”, J. Inequal. Appl., 2016, 215  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:691
    Full-text PDF :231
    References:51
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025