Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 80, Issue 2, Pages 231–239
DOI: https://doi.org/10.4213/mzm2804
(Mi mzm2804)
 

This article is cited in 2 scientific papers (total in 2 papers)

An Infinite-Dimensional Generalization of the Jung theorem

V. Nguyen-Khaca, K. Nguyen-Vanb

a Institute of Mathematics, National Centre for Natural Science and Technology
b Hanoi Pedagogical institute
Full-text PDF (413 kB) Citations (2)
References:
Abstract: A complete characterization of the extremal subsets of Hilbert spaces, which is an infinite-dimensional generalization of the classical Jung theorem, is given. The behavior of the set of points near the Chebyshev sphere of such a subset with respect to the Kuratowski and Hausdorff measures of noncompactness is investigated.
Keywords: Jung theorem, Jung constant, extremal subset of a Hilbert space, Chebyshev sphere, Kuratowski and Hausdorff noncompactness measures.
Received: 07.06.2005
English version:
Mathematical Notes, 2006, Volume 80, Issue 2, Pages 224–243
DOI: https://doi.org/10.1007/s11006-006-0131-6
Bibliographic databases:
UDC: 514.17
Language: Russian
Citation: V. Nguyen-Khac, K. Nguyen-Van, “An Infinite-Dimensional Generalization of the Jung theorem”, Mat. Zametki, 80:2 (2006), 231–239; Math. Notes, 80:2 (2006), 224–243
Citation in format AMSBIB
\Bibitem{NguNgu06}
\by V.~Nguyen-Khac, K.~Nguyen-Van
\paper An Infinite-Dimensional Generalization
of the Jung theorem
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 2
\pages 231--239
\mathnet{http://mi.mathnet.ru/mzm2804}
\crossref{https://doi.org/10.4213/mzm2804}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2281375}
\zmath{https://zbmath.org/?q=an:05155519}
\elib{https://elibrary.ru/item.asp?id=9274849}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 2
\pages 224--243
\crossref{https://doi.org/10.1007/s11006-006-0131-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240278000031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747485287}
Linking options:
  • https://www.mathnet.ru/eng/mzm2804
  • https://doi.org/10.4213/mzm2804
  • https://www.mathnet.ru/eng/mzm/v80/i2/p231
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:645
    Full-text PDF :211
    References:45
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024