Abstract:
A class of almost contact metric structures generalizing those of quasi-Sasakian and trans-Sasakian structures is introduced and studied. Its subclass consisting of normal structures locally conformal to quasi-Sasakian structures is investigated in detail.
This publication is cited in the following 4 articles:
O. E. Arseneva, M. B. Banaru, M. P. Burlakov, N. I. Guseva, A. R. Rustanov, S. V. Kharitonova, A.M. Shelekhov, “Vadim Fedorovich Kirichenko”, Materialy Mezhdunarodnoi konferentsii «Klassicheskaya i sovremennaya geometriya», posvyaschennoi 100-letiyu so dnya rozhdeniya professora Levona Sergeevicha Atanasyana (15 iyulya 1921 g.—5 iyulya 1998 g.).
Moskva, 1–4 noyabrya 2021 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 220, VINITI RAN, M., 2023, 3–16
A. V. Nikiforova, “Invarianty obobschennykh f-preobrazovanii pochti kontaktnykh metricheskikh struktur”, Chebyshevskii sb., 18:2 (2017), 173–182
V. F. Kirichenko, I. V. Uskorev, “Invariants of Conformal Transformations of Almost Contact Metric Structures”, Math. Notes, 84:6 (2008), 783–794
V. F. Kirichenko, E. A. Pol'kina, “Geodesic rigidity of certain classes of almost contact metric manifolds”, Russian Math. (Iz. VUZ), 51:9 (2007), 37–44