|
This article is cited in 11 scientific papers (total in 12 papers)
On matrix analogs of Fermat's little theorem
A. V. Zarelua Moscow State Technological University "Stankin"
Abstract:
The theorem proved in this paper gives a congruence for the traces of powers of an algebraic integer for the case in which the exponent of the power is a prime power. The theorem implies a congruence in Gauss' form for the traces of the sums of powers of algebraic integers, generalizing many familiar versions of Fermat's little theorem. Applied to the traces of integer matrices, this gives a proof of Arnold's conjecture about the congruence of the traces of powers of such matrices for the case in which the exponent of the power is a prime power.
Received: 29.03.2005
Citation:
A. V. Zarelua, “On matrix analogs of Fermat's little theorem”, Mat. Zametki, 79:6 (2006), 838–853; Math. Notes, 79:5 (2006), 783–796
Linking options:
https://www.mathnet.ru/eng/mzm2758https://doi.org/10.4213/mzm2758 https://www.mathnet.ru/eng/mzm/v79/i6/p838
|
Statistics & downloads: |
Abstract page: | 1020 | Full-text PDF : | 449 | References: | 81 | First page: | 14 |
|