Abstract:
In this paper, we present an analog of the Sauer theorem for projectively equivalent surfaces in the class of infinitely small equiareal deformations that pointwise preserve the spherical image of the surface.
\Bibitem{Fom03}
\by V.~T.~Fomenko
\paper An Analog of the Sauer Theorem
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 3
\pages 463--470
\mathnet{http://mi.mathnet.ru/mzm268}
\crossref{https://doi.org/10.4213/mzm268}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2022510}
\zmath{https://zbmath.org/?q=an:1066.53008}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 3
\pages 438--444
\crossref{https://doi.org/10.1023/A:1026123206174}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186455400015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0347755356}
Linking options:
https://www.mathnet.ru/eng/mzm268
https://doi.org/10.4213/mzm268
https://www.mathnet.ru/eng/mzm/v74/i3/p463
This publication is cited in the following 3 articles:
D. A. Zhukov, “MG-deformations of a surface of positive Gaussian curvature under assignment of variation of any tensor along an edge”, Russian Math. (Iz. VUZ), 61:12 (2017), 13–18
Zhukov D.A., “Beskonechno malye mg-deformatsii poverkhnosti polozhitelnoi gaussovoi krivizny pri statsionarnosti srednei krivizny vdol kraya”, Nauchno-tekhnicheskii vestnik povolzhya, 2012, no. 3, 18–25
Infinitesimal mg-deformations of a surface of positive gaussian curvature with stationarity of average curvature along the boundary
J. R. Arteaga Bejarano, M. A. Malakhaltsev, “Infinitesimal Ricci flows of minimal surfaces in the three-dimensional Euclidean space”, Russian Math. (Iz. VUZ), 51:10 (2007), 29–38