Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 74, Issue 3, Pages 449–462
DOI: https://doi.org/10.4213/mzm279
(Mi mzm279)
 

This article is cited in 7 scientific papers (total in 7 papers)

Asymptotics of Eigenvalues for a Class of Jacobi Matrices with Limiting Point Spectrum

É. A. Tur
Full-text PDF (225 kB) Citations (7)
References:
Abstract: In this paper, we study a class of Jacobi matrices with very rapidly decreasing weights. It is shown that the Weyl function (the matrix element of the resolvent of the operator) for the class under study can be expressed as the ratio of two entire transcendental functions of order zero. It is shown that the coefficients in the expansion of these functions in Taylor series are proportional to the generating functions of the number of integral solutions defined by certain Diophantine equations. An asymptotic estimate for the eigenvalues is obtained.
Received: 20.05.2001
Revised: 12.09.2002
English version:
Mathematical Notes, 2003, Volume 74, Issue 3, Pages 425–437
DOI: https://doi.org/10.1023/A:1026171122104
Bibliographic databases:
UDC: 517.984.5+512.643.5
Language: Russian
Citation: É. A. Tur, “Asymptotics of Eigenvalues for a Class of Jacobi Matrices with Limiting Point Spectrum”, Mat. Zametki, 74:3 (2003), 449–462; Math. Notes, 74:3 (2003), 425–437
Citation in format AMSBIB
\Bibitem{Tur03}
\by \'E.~A.~Tur
\paper Asymptotics of Eigenvalues for a Class of Jacobi Matrices with Limiting Point Spectrum
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 3
\pages 449--462
\mathnet{http://mi.mathnet.ru/mzm279}
\crossref{https://doi.org/10.4213/mzm279}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2022509}
\zmath{https://zbmath.org/?q=an:1081.47037}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 3
\pages 425--437
\crossref{https://doi.org/10.1023/A:1026171122104}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186455400014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0347755353}
Linking options:
  • https://www.mathnet.ru/eng/mzm279
  • https://doi.org/10.4213/mzm279
  • https://www.mathnet.ru/eng/mzm/v74/i3/p449
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:426
    Full-text PDF :220
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024