Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 78, Issue 2, Pages 234–240
DOI: https://doi.org/10.4213/mzm2588
(Mi mzm2588)
 

This article is cited in 6 scientific papers (total in 6 papers)

Fitting Classes with Given Properties of Hall Subgroups

V. N. Zagurskii, N. T. Vorob'ev

Vitebsk State University named after P. M. Masherov
Full-text PDF (177 kB) Citations (6)
References:
Abstract: In the theory of formations of finite solvable groups, there is a well-known result due to Blessenohl claiming that, for any local formation F, the class of groups for which every Hall π-subgroup belongs to F also is a local formation. In the present paper, we obtain a result exactly dual to that indicated in the theory of Fitting classes. We prove that if a Fitting class F is local, then the class of all groups all of whose Hall π-subgroups belong to F is also local.
Received: 13.09.2004
English version:
Mathematical Notes, 2005, Volume 78, Issue 2, Pages 213–218
DOI: https://doi.org/10.1007/s11006-005-0117-9
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: V. N. Zagurskii, N. T. Vorob'ev, “Fitting Classes with Given Properties of Hall Subgroups”, Mat. Zametki, 78:2 (2005), 234–240; Math. Notes, 78:2 (2005), 213–218
Citation in format AMSBIB
\Bibitem{ZagVor05}
\by V.~N.~Zagurskii, N.~T.~Vorob'ev
\paper Fitting Classes with Given Properties of Hall Subgroups
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 2
\pages 234--240
\mathnet{http://mi.mathnet.ru/mzm2588}
\crossref{https://doi.org/10.4213/mzm2588}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2245042}
\zmath{https://zbmath.org/?q=an:1084.20015}
\elib{https://elibrary.ru/item.asp?id=9155875}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 2
\pages 213--218
\crossref{https://doi.org/10.1007/s11006-005-0117-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231924500025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23944515107}
Linking options:
  • https://www.mathnet.ru/eng/mzm2588
  • https://doi.org/10.4213/mzm2588
  • https://www.mathnet.ru/eng/mzm/v78/i2/p234
  • This publication is cited in the following 6 articles:
    1. Skiba A.N., “on Some Arithmetic Properties of Finite Groups”, Note Mat., 36:1 (2016), 65–89  crossref  mathscinet  isi  scopus
    2. Skiba A.N., “On Some Results in the Theory of Finite Partially Soluble Groups”, Commun. Math. Stat., 4:3 (2016), 281–309  crossref  mathscinet  zmath  isi  scopus  scopus
    3. W. Guo, D. O. Revin, “On the class of groups with pronormal Hall $\pi$-subgroups”, Siberian Math. J., 55:3 (2014), 415–427  mathnet  crossref  mathscinet  isi  elib  elib
    4. A. N. Skiba, “On $\sigma$-properties of finite groups I”, PFMT, 2014, no. 4(21), 89–96  mathnet
    5. S. N. Vorob'ev, E. N. Zalesskaya, “An analog of Shemetkov's conjecture for Fischer classes of finite groups”, Siberian Math. J., 54:5 (2013), 790–797  mathnet  crossref  mathscinet  isi
    6. E. P. Vdovin, D. O. Revin, “Neradikalnost klassa $E_\pi$-grupp”, Tr. In-ta matem., 21:1 (2013), 35–39  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:428
    Full-text PDF :267
    References:78
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025