Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 78, Issue 2, Pages 223–233
DOI: https://doi.org/10.4213/mzm2576
(Mi mzm2576)
 

This article is cited in 2 scientific papers (total in 2 papers)

A metric of constant curvature on polycycles

M. Dezaa, M. I. Shtogrinb

a Ècole Normale Supérieure, Département de mathématiques et applications
b Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (207 kB) Citations (2)
References:
Abstract: We prove the following main theorem of the theory of $(r,q)$-polycycles. Suppose a nonseparable plane graph satisfies the following two conditions:
  • 1) each internal face is an r-gon, where $r\ge3$;
  • 2) the degree of each internal vertex is $q$, where $q\ge3$, and the degree of each boundary vertex is at most $q$ and at least 2.
Then it also possesses the following third property:
  • 3) the vertices, the edges, and the internal faces form a cell complex.
Simple examples show that conditions 1) and 2) are independent even provided condition 3) is satisfied. These are the defining conditions for an $(r,q)$-polycycle.
Received: 08.05.2003
Revised: 01.04.2004
English version:
Mathematical Notes, 2005, Volume 78, Issue 2, Pages 204–212
DOI: https://doi.org/10.1007/s11006-005-0116-x
Bibliographic databases:
Document Type: Article
UDC: 514.17+519.17
Language: Russian
Citation: M. Deza, M. I. Shtogrin, “A metric of constant curvature on polycycles”, Mat. Zametki, 78:2 (2005), 223–233; Math. Notes, 78:2 (2005), 204–212
Citation in format AMSBIB
\Bibitem{DezSht05}
\by M.~Deza, M.~I.~Shtogrin
\paper A metric of constant curvature on polycycles
\jour Mat. Zametki
\yr 2005
\vol 78
\issue 2
\pages 223--233
\mathnet{http://mi.mathnet.ru/mzm2576}
\crossref{https://doi.org/10.4213/mzm2576}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2245041}
\zmath{https://zbmath.org/?q=an:1080.05023|02239739}
\elib{https://elibrary.ru/item.asp?id=9155874}
\transl
\jour Math. Notes
\yr 2005
\vol 78
\issue 2
\pages 204--212
\crossref{https://doi.org/10.1007/s11006-005-0116-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231924500024}
\elib{https://elibrary.ru/item.asp?id=13473914}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23944440239}
Linking options:
  • https://www.mathnet.ru/eng/mzm2576
  • https://doi.org/10.4213/mzm2576
  • https://www.mathnet.ru/eng/mzm/v78/i2/p223
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:369
    Full-text PDF :219
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024