|
This article is cited in 16 scientific papers (total in 16 papers)
Identities for Generalized Polylogarithms
E. A. Ulanskii M. V. Lomonosov Moscow State University
Abstract:
We study the behavior of generalized polylogarithms under the action of the group of fractional-linear transformations of the argument. This group is formed by the transformations $z\mapsto1-z$ and $z\mapsto-z/(1-z)$, the last of which allows us to obtain identities of the form
$$
\operatorname{Li}_k\biggl(\frac{-z}{1-z}\biggr)
=-\sum_{|\bar s|=k}\operatorname{Li}_{\bar s}(z).
$$
We prove that these identities imply the linear independence of generalized polylogarithms and the algebraic independence of classical polylogarithms over the field $\mathbb C(z)$.
Received: 19.02.2002 Revised: 24.07.2002
Citation:
E. A. Ulanskii, “Identities for Generalized Polylogarithms”, Mat. Zametki, 73:4 (2003), 613–624; Math. Notes, 73:4 (2003), 571–581
Linking options:
https://www.mathnet.ru/eng/mzm209https://doi.org/10.4213/mzm209 https://www.mathnet.ru/eng/mzm/v73/i4/p613
|
|