Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 73, Issue 4, Pages 603–612
DOI: https://doi.org/10.4213/mzm208
(Mi mzm208)
 

An Application of the Gauss Lemma to the Study of Pseudorandom Sequences Based on Quadratic Residues

V. E. Tarakanov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: In the context of the study of pseudorandom sequences that use quadratic residues modulo the prime $p$, the constructive description of the set of prime moduli for which given integers are quadratic residues is considered. Using the Gauss Lemma, we prove a criterion of combinatorial nature for a given integer $a$ to be a quadratic residue prime modulo $p$. It is shown how to apply this criterion to the problem of effective description of the prime moduli $p$ satisfying the equation $\bigl(\frac ap\bigr)=1$ for each $p$ from a given finite set $M$.
Received: 07.07.2002
English version:
Mathematical Notes, 2003, Volume 73, Issue 4, Pages 562–570
DOI: https://doi.org/10.1023/A:1023267406766
Bibliographic databases:
Document Type: Article
UDC: 511.37
Language: Russian
Citation: V. E. Tarakanov, “An Application of the Gauss Lemma to the Study of Pseudorandom Sequences Based on Quadratic Residues”, Mat. Zametki, 73:4 (2003), 603–612; Math. Notes, 73:4 (2003), 562–570
Citation in format AMSBIB
\Bibitem{Tar03}
\by V.~E.~Tarakanov
\paper An Application of the Gauss Lemma to the Study of Pseudorandom Sequences Based on Quadratic Residues
\jour Mat. Zametki
\yr 2003
\vol 73
\issue 4
\pages 603--612
\mathnet{http://mi.mathnet.ru/mzm208}
\crossref{https://doi.org/10.4213/mzm208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1991906}
\zmath{https://zbmath.org/?q=an:1101.11004}
\transl
\jour Math. Notes
\yr 2003
\vol 73
\issue 4
\pages 562--570
\crossref{https://doi.org/10.1023/A:1023267406766}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182776700032}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0347124817}
Linking options:
  • https://www.mathnet.ru/eng/mzm208
  • https://doi.org/10.4213/mzm208
  • https://www.mathnet.ru/eng/mzm/v73/i4/p603
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024