Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1995, Volume 58, Issue 1, Pages 12–21 (Mi mzm2021)  

This article is cited in 2 scientific papers (total in 2 papers)

Vibrosolutions to differential equations in distributions with discontinuous regular functions on the right-hand side

M. V. Basin

Institute of Control Sciences, Russian Academy of Sciences
Full-text PDF (807 kB) Citations (2)
References:
Abstract: We study $n$-dimensional differential equations in distributions of the form
$$ \dot x(t)=f(x,u,t)+ b(x,u,t)\dot u(t), $$
where $f(x,u,t)$ and $b(x,u,t)$ are piecewise continuous functions and $u(t)$ is an $m$-dimensional function of bounded variation with nondecreasing components. The notion of vibrosolution is introduced for equations of this type, and necessary and sufficient conditions for the existence of vibrosolutions are derived. The transition to an equivalent equation with measure is carried out, thus making it possible to explicitly calculate the jumps of the vibrosolutions at the points of discontinuity of $u(t)$.
Received: 10.12.1993
English version:
Mathematical Notes, 1995, Volume 58, Issue 1, Pages 685–691
DOI: https://doi.org/10.1007/BF02306177
Bibliographic databases:
Language: Russian
Citation: M. V. Basin, “Vibrosolutions to differential equations in distributions with discontinuous regular functions on the right-hand side”, Mat. Zametki, 58:1 (1995), 12–21; Math. Notes, 58:1 (1995), 685–691
Citation in format AMSBIB
\Bibitem{Bas95}
\by M.~V.~Basin
\paper Vibrosolutions to differential equations in distributions with discontinuous regular functions on the right-hand side
\jour Mat. Zametki
\yr 1995
\vol 58
\issue 1
\pages 12--21
\mathnet{http://mi.mathnet.ru/mzm2021}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1361109}
\zmath{https://zbmath.org/?q=an:0854.34008}
\transl
\jour Math. Notes
\yr 1995
\vol 58
\issue 1
\pages 685--691
\crossref{https://doi.org/10.1007/BF02306177}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TV39900002}
Linking options:
  • https://www.mathnet.ru/eng/mzm2021
  • https://www.mathnet.ru/eng/mzm/v58/i1/p12
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024