Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1995, Volume 58, Issue 1, Pages 3–11 (Mi mzm2020)  

This article is cited in 3 scientific papers (total in 3 papers)

On a problem of Zambakhidze–Smirnov

S. M. Ageev

A. S. Pushkin Brest State University
Full-text PDF (849 kB) Citations (3)
References:
Abstract: We say that the action extension problem is solvable for a bicompact group $G$ if for any metric $G$-space $\mathbb X$ and for any topological embedding $c$ of the orbit space $X$ into a metric space $Y$ there exist a $G$-space $\mathbb Z$, an invariant topological embedding $b\colon X\to\mathbb Z$, and a homeomorphism $h\colon Y\to Z$ such that the diagram
$$ </nomathmode><mathmode>
\begin{alignedat}{2} &\mathbb X\ \xrightarrow{\hskip13mm b\hskip13mm}&&\ \mathbb Z \\ {\scriptstyle p}&\downarrow\hskip30pt&&\downarrow{\scriptstyle p} \\ &X \xrightarrow{\quad c\quad} \ Y\ \xrightarrow{\quad h\quad} &&\ Z. \end{alignedat}
$$
</mathmode><nomathmode> is commutative. We prove the following theorem: for a bicompact zero-dimensional group $G$, the action extension problem is solvable for the class of dense topological embeddings.
Received: 24.05.1990
Revised: 15.10.1993
English version:
Mathematical Notes, 1995, Volume 58, Issue 1, Pages 679–684
DOI: https://doi.org/10.1007/BF02306176
Bibliographic databases:
Language: Russian
Citation: S. M. Ageev, “On a problem of Zambakhidze–Smirnov”, Mat. Zametki, 58:1 (1995), 3–11; Math. Notes, 58:1 (1995), 679–684
Citation in format AMSBIB
\Bibitem{Age95}
\by S.~M.~Ageev
\paper On~a~problem of Zambakhidze--Smirnov
\jour Mat. Zametki
\yr 1995
\vol 58
\issue 1
\pages 3--11
\mathnet{http://mi.mathnet.ru/mzm2020}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1361108}
\zmath{https://zbmath.org/?q=an:0894.54034}
\transl
\jour Math. Notes
\yr 1995
\vol 58
\issue 1
\pages 679--684
\crossref{https://doi.org/10.1007/BF02306176}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TV39900001}
Linking options:
  • https://www.mathnet.ru/eng/mzm2020
  • https://www.mathnet.ru/eng/mzm/v58/i1/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:416
    Full-text PDF :110
    References:75
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025