|
This article is cited in 7 scientific papers (total in 7 papers)
Evaluation of the limits of maximal means
O. P. Filatov Samara State University
Abstract:
It is proved that the limit
$$
\lim_{\Delta\to\infty}\sup_\gamma\frac 1\Delta
\int_0^\Delta f\bigl(\gamma(t)\bigr)\,dt,
$$
where $f\colon\mathbb R\to\mathbb R$ is a locally integrable (in the sense of Lebesgue) function with zero mean and the supremum is taken over all solutions of the generalized differential equation $\dot\gamma\in[\omega_1,\omega_2]$, coincides with the limit
$$
\lim_{T\to\infty}\sup_{c\ge0}\varphi_f(k,T,c),
$$
where
$$
\varphi_f=\frac{(k-1)\overline I_f(T,c)}
{1+(k-1)\overline\lambda_f(T,c)},\qquad
k=\frac{\omega_2}{\omega_1}.
$$
Here $\overline\lambda_f=\lambda_f/T$, $\overline I_f=I_f/T$, and $\lambda_f$ is the Lebesgue measure of the set
$$
\bigl\{\gamma\in[\gamma_0,\gamma_0+T]:
f(\gamma)\ge c\bigr\}=A_f,\qquad
I_f=\int_{A_f}f(\gamma)\,d\gamma.
$$
It is established that this limit always exists for almost-periodic functions $f$.
Received: 03.11.1994
Citation:
O. P. Filatov, “Evaluation of the limits of maximal means”, Mat. Zametki, 59:5 (1996), 759–767; Math. Notes, 59:5 (1996), 547–553
Linking options:
https://www.mathnet.ru/eng/mzm1770https://doi.org/10.4213/mzm1770 https://www.mathnet.ru/eng/mzm/v59/i5/p759
|
|