Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 59, Issue 5, Pages 759–767
DOI: https://doi.org/10.4213/mzm1770
(Mi mzm1770)
 

This article is cited in 7 scientific papers (total in 7 papers)

Evaluation of the limits of maximal means

O. P. Filatov

Samara State University
Full-text PDF (162 kB) Citations (7)
References:
Abstract: It is proved that the limit
$$ \lim_{\Delta\to\infty}\sup_\gamma\frac 1\Delta \int_0^\Delta f\bigl(\gamma(t)\bigr)\,dt, $$
where $f\colon\mathbb R\to\mathbb R$ is a locally integrable (in the sense of Lebesgue) function with zero mean and the supremum is taken over all solutions of the generalized differential equation $\dot\gamma\in[\omega_1,\omega_2]$, coincides with the limit
$$ \lim_{T\to\infty}\sup_{c\ge0}\varphi_f(k,T,c), $$
where
$$ \varphi_f=\frac{(k-1)\overline I_f(T,c)} {1+(k-1)\overline\lambda_f(T,c)},\qquad k=\frac{\omega_2}{\omega_1}. $$
Here $\overline\lambda_f=\lambda_f/T$, $\overline I_f=I_f/T$, and $\lambda_f$ is the Lebesgue measure of the set
$$ \bigl\{\gamma\in[\gamma_0,\gamma_0+T]: f(\gamma)\ge c\bigr\}=A_f,\qquad I_f=\int_{A_f}f(\gamma)\,d\gamma. $$
It is established that this limit always exists for almost-periodic functions $f$.
Received: 03.11.1994
English version:
Mathematical Notes, 1996, Volume 59, Issue 5, Pages 547–553
DOI: https://doi.org/10.1007/BF02308823
Bibliographic databases:
UDC: 517.828
Language: Russian
Citation: O. P. Filatov, “Evaluation of the limits of maximal means”, Mat. Zametki, 59:5 (1996), 759–767; Math. Notes, 59:5 (1996), 547–553
Citation in format AMSBIB
\Bibitem{Fil96}
\by O.~P.~Filatov
\paper Evaluation of the limits of maximal means
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 5
\pages 759--767
\mathnet{http://mi.mathnet.ru/mzm1770}
\crossref{https://doi.org/10.4213/mzm1770}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1445457}
\zmath{https://zbmath.org/?q=an:0887.34039}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 5
\pages 547--553
\crossref{https://doi.org/10.1007/BF02308823}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VM73200012}
Linking options:
  • https://www.mathnet.ru/eng/mzm1770
  • https://doi.org/10.4213/mzm1770
  • https://www.mathnet.ru/eng/mzm/v59/i5/p759
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025