Abstract:
In this paper some results that are known for extreme points of the unit ball in dual space are carried over to a more general case, namely to the case of the boundary of the ball (Γ⊂B is the boundary of the unit ball B in the space dual to X if every x∈X achieves its maximum value on B at some point of Γ). For example, it is established that if a set is bounded in X and countably compact in σ(X,Γ), then it is weakly compact in X.
Citation:
V. I. Rybakov, “On convergence on the boundary of the unit ball in dual space”, Mat. Zametki, 59:5 (1996), 753–758; Math. Notes, 59:5 (1996), 543–546
\Bibitem{Ryb96}
\by V.~I.~Rybakov
\paper On convergence on the boundary of the unit ball in dual space
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 5
\pages 753--758
\mathnet{http://mi.mathnet.ru/mzm1769}
\crossref{https://doi.org/10.4213/mzm1769}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1445456}
\zmath{https://zbmath.org/?q=an:0888.46008}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 5
\pages 543--546
\crossref{https://doi.org/10.1007/BF02308822}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VM73200011}
Linking options:
https://www.mathnet.ru/eng/mzm1769
https://doi.org/10.4213/mzm1769
https://www.mathnet.ru/eng/mzm/v59/i5/p753
This publication is cited in the following 3 articles:
E. V. Manokhin, N. O. Kozlova, V. E. Komov, “Kharkovskaya shkola M. I. Kadetsa i matematiki Tuly”, Chebyshevskii sb., 22:4 (2021), 324–331
I. V. Denisov, “Puti razvitiya matematicheskogo analiza v Tulskom gosudarstvennom pedagogicheskom universitete imeni L. N. Tolstogo (k 70-letiyu obrazovaniya kafedry matematicheskogo analiza)”, Chebyshevskii sb., 22:5 (2021), 270–306
Jonathan M. Borwein, Warren B. Moors, Open Problems in Topology II, 2007, 549