Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 59, Issue 5, Pages 753–758
DOI: https://doi.org/10.4213/mzm1769
(Mi mzm1769)
 

This article is cited in 3 scientific papers (total in 3 papers)

On convergence on the boundary of the unit ball in dual space

V. I. Rybakov

Tula State Pedagogical University
Full-text PDF (167 kB) Citations (3)
References:
Abstract: In this paper some results that are known for extreme points of the unit ball in dual space are carried over to a more general case, namely to the case of the boundary of the ball (ΓB is the boundary of the unit ball B in the space dual to X if every xX achieves its maximum value on B at some point of Γ). For example, it is established that if a set is bounded in X and countably compact in σ(X,Γ), then it is weakly compact in X.
Received: 10.05.1994
English version:
Mathematical Notes, 1996, Volume 59, Issue 5, Pages 543–546
DOI: https://doi.org/10.1007/BF02308822
Bibliographic databases:
UDC: 517
Language: Russian
Citation: V. I. Rybakov, “On convergence on the boundary of the unit ball in dual space”, Mat. Zametki, 59:5 (1996), 753–758; Math. Notes, 59:5 (1996), 543–546
Citation in format AMSBIB
\Bibitem{Ryb96}
\by V.~I.~Rybakov
\paper On convergence on the boundary of the unit ball in dual space
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 5
\pages 753--758
\mathnet{http://mi.mathnet.ru/mzm1769}
\crossref{https://doi.org/10.4213/mzm1769}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1445456}
\zmath{https://zbmath.org/?q=an:0888.46008}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 5
\pages 543--546
\crossref{https://doi.org/10.1007/BF02308822}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VM73200011}
Linking options:
  • https://www.mathnet.ru/eng/mzm1769
  • https://doi.org/10.4213/mzm1769
  • https://www.mathnet.ru/eng/mzm/v59/i5/p753
  • This publication is cited in the following 3 articles:
    1. E. V. Manokhin, N. O. Kozlova, V. E. Komov, “Kharkovskaya shkola M. I. Kadetsa i matematiki Tuly”, Chebyshevskii sb., 22:4 (2021), 324–331  mathnet  crossref
    2. I. V. Denisov, “Puti razvitiya matematicheskogo analiza v Tulskom gosudarstvennom pedagogicheskom universitete imeni L. N. Tolstogo (k 70-letiyu obrazovaniya kafedry matematicheskogo analiza)”, Chebyshevskii sb., 22:5 (2021), 270–306  mathnet  crossref
    3. Jonathan M. Borwein, Warren B. Moors, Open Problems in Topology II, 2007, 549  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:300
    Full-text PDF :192
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025