Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 59, Issue 2, Pages 200–210
DOI: https://doi.org/10.4213/mzm1707
(Mi mzm1707)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the envelopes of Abelian subgroups in connected Lie groups

V. V. Gorbatsevich

Moscow State Aviation Technological University
Full-text PDF (190 kB) Citations (2)
References:
Abstract: An Abelian subgroup $A$ in a Lie group $G$ is said to be regular if it belongs to a connected Abelian subgroup $C$ of the group $G$ (then $C$ is called an envelope of $A$). A strict envelope is a minimal element in the set of all envelopes of the subgroup $A$. We prove a series of assertions on the envelopes of Abelian subgroups. It is shown that the centralizer of a subgroup $A$ in $G$ is transitive on connected components of the space of all strict envelopes of $A$. We give an application of this result to the description of reductions of completely integrable equations on a torus to equations with constant coefficients.
Received: 26.10.1994
English version:
Mathematical Notes, 1996, Volume 59, Issue 2, Pages 141–147
DOI: https://doi.org/10.1007/BF02310953
Bibliographic databases:
UDC: 512.81
Language: Russian
Citation: V. V. Gorbatsevich, “On the envelopes of Abelian subgroups in connected Lie groups”, Mat. Zametki, 59:2 (1996), 200–210; Math. Notes, 59:2 (1996), 141–147
Citation in format AMSBIB
\Bibitem{Gor96}
\by V.~V.~Gorbatsevich
\paper On~the envelopes of Abelian subgroups in connected Lie groups
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 2
\pages 200--210
\mathnet{http://mi.mathnet.ru/mzm1707}
\crossref{https://doi.org/10.4213/mzm1707}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1391835}
\zmath{https://zbmath.org/?q=an:0905.22007}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 2
\pages 141--147
\crossref{https://doi.org/10.1007/BF02310953}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UP82900018}
Linking options:
  • https://www.mathnet.ru/eng/mzm1707
  • https://doi.org/10.4213/mzm1707
  • https://www.mathnet.ru/eng/mzm/v59/i2/p200
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024