Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 59, Issue 2, Pages 189–199
DOI: https://doi.org/10.4213/mzm1706
(Mi mzm1706)
 

This article is cited in 22 scientific papers (total in 22 papers)

Linear widths of Hölder–Nikol'skii classes of periodic functions of several variables

È. M. Galeev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider the linear widths λN(Wrp(Tn),Lq) and λN(Hrp(Tn),Lq) of the classes Wrp(Tn) and Hrp(Tn) of periodic functions of one or several variables in the space Lq. For the Sobolev classes Wrp(Tn) of functions of one or several variables, we state some well-known results without proof; for the Hölder–Nikol'skii classes Hrp(Tn), we state some well-known results, prove some new results, and present some previously unpublished proofs.
Received: 23.03.1995
English version:
Mathematical Notes, 1996, Volume 59, Issue 2, Pages 133–140
DOI: https://doi.org/10.1007/BF02310952
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: È. M. Galeev, “Linear widths of Hölder–Nikol'skii classes of periodic functions of several variables”, Mat. Zametki, 59:2 (1996), 189–199; Math. Notes, 59:2 (1996), 133–140
Citation in format AMSBIB
\Bibitem{Gal96}
\by \`E.~M.~Galeev
\paper Linear widths of H\"older--Nikol'skii classes of periodic functions of several variables
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 2
\pages 189--199
\mathnet{http://mi.mathnet.ru/mzm1706}
\crossref{https://doi.org/10.4213/mzm1706}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1391834}
\zmath{https://zbmath.org/?q=an:0886.46036}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 2
\pages 133--140
\crossref{https://doi.org/10.1007/BF02310952}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UP82900017}
Linking options:
  • https://www.mathnet.ru/eng/mzm1706
  • https://doi.org/10.4213/mzm1706
  • https://www.mathnet.ru/eng/mzm/v59/i2/p189
  • This publication is cited in the following 22 articles:
    1. G. A. Akishev, “Ob otsenkakh lineinykh poperechnikov klassov funktsii mnogikh peremennykh v prostranstve Lorentsa”, Tr. IMM UrO RAN, 28, no. 4, 2022, 23–39  mathnet  crossref  mathscinet  elib
    2. Dinh Dung, “B-Spline Quasi-Interpolation Sampling Representation and Sampling Recovery in Sobolev Spaces of Mixed Smoothness”, Acta Math. Vietnam, 43:1 (2018), 83–110  crossref  mathscinet  zmath  isi  scopus  scopus
    3. Dirksen S., Ullrich T., “Gelfand Numbers Related to Structured Sparsity and Besov Space Embeddings With Small Mixed Smoothness”, J. Complex., 48 (2018), 69–102  crossref  mathscinet  zmath  isi  scopus
    4. Yu. V. Malykhin, K. S. Ryutin, “The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric”, Math. Notes, 101:1 (2017), 94–99  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Romanyuk A.S., “Trigonometric and Linear Widths For the Classes of Periodic Multivariate Functions”, Ukr. Math. J., 69:5 (2017), 782–795  crossref  mathscinet  isi  scopus  scopus
    6. Byrenheid G., Ullrich T., “Optimal Sampling Recovery of Mixed Order Sobolev Embeddings Via Discrete Littlewood-Paley Type Characterizations”, Anal. Math., 43:2 (2017), 133–191  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Van Kien Nguyen Sickel W., “Weyl Numbers of Embeddings of Tensor Product Besov Spaces”, J. Approx. Theory, 200 (2015), 170–220  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Derev'yanko N.V., “Estimations of Linear Widths of the Classes $B_{p,\theta}^\Omega$ of Periodic Functions of Many Variables in the Space $L_q$”, Ukr. Math. J., 66:7 (2014), 1013–1027  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Romanyuk A.S., “On the Problem of Linear Widths of the Classes $B_{p,\theta}^r$ of Periodic Functions of Many Variables”, Ukr. Math. J., 66:7 (2014), 1085–1098  crossref  mathscinet  zmath  isi  scopus  scopus
    10. Hansen M. Sickel W., “Best M-Term Approximation and Sobolev-Besov Spaces of Dominating Mixed Smoothness-the Case of Compact Embeddings”, Constr. Approx., 36:1 (2012), 1–51  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    11. E. M. Galeev, “Poperechniki funktsionalnykh klassov i konechnomernykh mnozhestv”, Vladikavk. matem. zhurn., 13:2 (2011), 3–14  mathnet  elib
    12. Dinh Dung, “B-Spline Quasi-Interpolant Representations and Sampling Recovery of Functions with Mixed Smoothness”, J. Complex., 27:6 (2011), 541–567  crossref  mathscinet  zmath  isi  scopus  scopus
    13. Pomahiok A.C., “Diameters and Best Approximation of the Classes B-P(R) of Periodic Functions of Several Variables”, Anal. Math., 37:3 (2011), 181–213  crossref  mathscinet  isi  scopus  scopus
    14. Bazarkhanov D.B., “Otsenki poperechnikov klassov periodicheskikh funktsii mnogikh peremennykh”, Doklady Akademii nauk, 436:5 (2011), 583–585  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    15. D. B. Bazarkhanov, “Estimates for the widths of classes of periodic functions of several variables – I”, Eurasian Math. J., 1:3 (2010), 11–26  mathnet  mathscinet  zmath
    16. K. A. Bekmaganbetov, “O poryadkakh priblizheniya klassa Besova v metrike anizotropnykh prostranstv Lorentsa”, Ufimsk. matem. zhurn., 1:2 (2009), 9–16  mathnet  zmath  elib
    17. Fang, GS, “The complexity of function approximation on Sobolev spaces with bounded mixed derivative by linear Monte Carlo methods”, Journal of Complexity, 24:3 (2008), 398  crossref  mathscinet  zmath  isi  scopus  scopus
    18. A. S. Romanyuk, “Best approximations and widths of classes of periodic functions of several variables”, Sb. Math., 199:2 (2008), 253–275  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    19. G. A. Akishev, “On Orders of Approximation of Function Classes in Lorentz spaces with Anisotropic Norm”, Math. Notes, 81:1 (2007), 3–14  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    20. G. A. Akishev, “Approximation of function classes in spaces with mixed norm”, Sb. Math., 197:8 (2006), 1121–1144  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:637
    Full-text PDF :283
    References:77
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025