Abstract:
We consider the linear widths λN(Wrp(Tn),Lq) and λN(Hrp(Tn),Lq) of the classes Wrp(Tn) and Hrp(Tn) of periodic functions of one or several variables in the space Lq. For the Sobolev classes Wrp(Tn) of functions of one or several variables, we state some well-known results without proof; for the Hölder–Nikol'skii classes Hrp(Tn), we state some well-known results, prove some new results, and present some previously unpublished proofs.
Citation:
È. M. Galeev, “Linear widths of Hölder–Nikol'skii classes of periodic functions of several variables”, Mat. Zametki, 59:2 (1996), 189–199; Math. Notes, 59:2 (1996), 133–140
\Bibitem{Gal96}
\by \`E.~M.~Galeev
\paper Linear widths of H\"older--Nikol'skii classes of periodic functions of several variables
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 2
\pages 189--199
\mathnet{http://mi.mathnet.ru/mzm1706}
\crossref{https://doi.org/10.4213/mzm1706}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1391834}
\zmath{https://zbmath.org/?q=an:0886.46036}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 2
\pages 133--140
\crossref{https://doi.org/10.1007/BF02310952}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UP82900017}
Linking options:
https://www.mathnet.ru/eng/mzm1706
https://doi.org/10.4213/mzm1706
https://www.mathnet.ru/eng/mzm/v59/i2/p189
This publication is cited in the following 22 articles:
G. A. Akishev, “Ob otsenkakh lineinykh poperechnikov klassov funktsii mnogikh peremennykh v prostranstve Lorentsa”, Tr. IMM UrO RAN, 28, no. 4, 2022, 23–39
Dinh Dung, “B-Spline Quasi-Interpolation Sampling Representation and Sampling Recovery in Sobolev Spaces of Mixed Smoothness”, Acta Math. Vietnam, 43:1 (2018), 83–110
Dirksen S., Ullrich T., “Gelfand Numbers Related to Structured Sparsity and Besov Space Embeddings With Small Mixed Smoothness”, J. Complex., 48 (2018), 69–102
Yu. V. Malykhin, K. S. Ryutin, “The Product of Octahedra is Badly Approximated in the $\ell_{2,1}$-Metric”, Math. Notes, 101:1 (2017), 94–99
Romanyuk A.S., “Trigonometric and Linear Widths For the Classes of Periodic Multivariate Functions”, Ukr. Math. J., 69:5 (2017), 782–795
Byrenheid G., Ullrich T., “Optimal Sampling Recovery of Mixed Order Sobolev Embeddings Via Discrete Littlewood-Paley Type Characterizations”, Anal. Math., 43:2 (2017), 133–191
Van Kien Nguyen Sickel W., “Weyl Numbers of Embeddings of Tensor Product Besov Spaces”, J. Approx. Theory, 200 (2015), 170–220
Derev'yanko N.V., “Estimations of Linear Widths of the Classes $B_{p,\theta}^\Omega$ of Periodic Functions of Many Variables in the Space $L_q$”, Ukr. Math. J., 66:7 (2014), 1013–1027
Romanyuk A.S., “On the Problem of Linear Widths of the Classes $B_{p,\theta}^r$ of Periodic Functions of Many Variables”, Ukr. Math. J., 66:7 (2014), 1085–1098
Hansen M. Sickel W., “Best M-Term Approximation and Sobolev-Besov Spaces of Dominating Mixed Smoothness-the Case of Compact Embeddings”, Constr. Approx., 36:1 (2012), 1–51
E. M. Galeev, “Poperechniki funktsionalnykh klassov i konechnomernykh mnozhestv”, Vladikavk. matem. zhurn., 13:2 (2011), 3–14
Dinh Dung, “B-Spline Quasi-Interpolant Representations and Sampling Recovery of Functions with Mixed Smoothness”, J. Complex., 27:6 (2011), 541–567
Pomahiok A.C., “Diameters and Best Approximation of the Classes B-P(R) of Periodic Functions of Several Variables”, Anal. Math., 37:3 (2011), 181–213
D. B. Bazarkhanov, “Estimates for the widths of classes of periodic functions of several variables – I”, Eurasian Math. J., 1:3 (2010), 11–26
K. A. Bekmaganbetov, “O poryadkakh priblizheniya klassa Besova v metrike anizotropnykh prostranstv Lorentsa”, Ufimsk. matem. zhurn., 1:2 (2009), 9–16
Fang, GS, “The complexity of function approximation on Sobolev spaces with bounded mixed derivative by linear Monte Carlo methods”, Journal of Complexity, 24:3 (2008), 398
A. S. Romanyuk, “Best approximations and widths of classes of periodic functions of several variables”, Sb. Math., 199:2 (2008), 253–275
G. A. Akishev, “On Orders of Approximation of Function Classes in Lorentz spaces with Anisotropic Norm”, Math. Notes, 81:1 (2007), 3–14
G. A. Akishev, “Approximation of function classes in spaces with mixed
norm”, Sb. Math., 197:8 (2006), 1121–1144