|
This article is cited in 1 scientific paper (total in 1 paper)
Strict inequalities for the derivatives of functions satisfying certain boundary conditions
A. I. Zvyagintsev Higher Administrative School of St. Peterburg's Administration
Abstract:
For functions satisfying the boundary conditions
$$
f(0)=f'(0)=\dots=f^{(m)}(0)=0,\qquad
f(1)=f'(1)=\dots=f^{(l)}(1)=0,
$$
the following inequality with sharp constants in additive form is proved:
$$
\|f^{(n-1)}\|_{L_q(0,1)}
\le A\|f\|_{L_p(0,1)}+B\|f^{(n)}\|_{L_r(0,1)},
$$
where $n\ge2$, $0\le l\le n-2$, $-1\le m\le l$, $m+l\le n-3$, $1\le p,q,r\le\infty$.
Received: 26.03.1996 Revised: 08.04.1996
Citation:
A. I. Zvyagintsev, “Strict inequalities for the derivatives of functions satisfying certain boundary conditions”, Mat. Zametki, 62:5 (1997), 712–724; Math. Notes, 62:5 (1997), 596–606
Linking options:
https://www.mathnet.ru/eng/mzm1658https://doi.org/10.4213/mzm1658 https://www.mathnet.ru/eng/mzm/v62/i5/p712
|
|