Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 5, Pages 700–711
DOI: https://doi.org/10.4213/mzm1657
(Mi mzm1657)
 

This article is cited in 3 scientific papers (total in 3 papers)

Compactness of support of solutions to nonlinear second-order elliptic and parabolic equations in a half-cylinder

G. V. Grishina

N. E. Bauman Moscow State Technical University
Full-text PDF (223 kB) Citations (3)
References:
Abstract: We study equations of the form
$$ \begin{gathered} u_{tt}+Lu+b(x,t)u_t=a(x,t)|u|^{\sigma-1}u, \\-u_t+Lu=a(x,t)|u|^{\sigma-1}u, \end{gathered} $$
where $L$ is a uniformly elliptic operator and $0<\sigma<1$. In the half-cylinder $\Pi_{0,\infty}=\{(x,t):x=(x_1,\dots,x_n)\in \Omega,\ t>0\}$, where $\Omega\subset\mathbb R^n$ is a bounded domain, we consider solutions satisfying the homogeneous Neumann condition for $x\in\partial\Omega $ and $t>0$. We find conditions under which these solutions have compact support and prove statements of the following type: $u(x,t)=o(t^\gamma)$ as $t\to\infty$, then there exists a $T$ such that $u(x,t)\equiv0$ for $t>T$. In this case $\gamma$ depends on the coefficients of the equation and on the exponent $\sigma$.
Received: 19.02.1996
Revised: 23.04.1997
English version:
Mathematical Notes, 1997, Volume 62, Issue 5, Pages 586–595
DOI: https://doi.org/10.1007/BF02361297
Bibliographic databases:
UDC: 517.956
Language: Russian
Citation: G. V. Grishina, “Compactness of support of solutions to nonlinear second-order elliptic and parabolic equations in a half-cylinder”, Mat. Zametki, 62:5 (1997), 700–711; Math. Notes, 62:5 (1997), 586–595
Citation in format AMSBIB
\Bibitem{Gri97}
\by G.~V.~Grishina
\paper Compactness of support of solutions to nonlinear second-order elliptic and parabolic equations in a half-cylinder
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 5
\pages 700--711
\mathnet{http://mi.mathnet.ru/mzm1657}
\crossref{https://doi.org/10.4213/mzm1657}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1627931}
\zmath{https://zbmath.org/?q=an:0918.35012}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 5
\pages 586--595
\crossref{https://doi.org/10.1007/BF02361297}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075396200008}
Linking options:
  • https://www.mathnet.ru/eng/mzm1657
  • https://doi.org/10.4213/mzm1657
  • https://www.mathnet.ru/eng/mzm/v62/i5/p700
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:473
    Full-text PDF :214
    References:74
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024