Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 5, Pages 700–711
DOI: https://doi.org/10.4213/mzm1657
(Mi mzm1657)
 

This article is cited in 3 scientific papers (total in 3 papers)

Compactness of support of solutions to nonlinear second-order elliptic and parabolic equations in a half-cylinder

G. V. Grishina

N. E. Bauman Moscow State Technical University
Full-text PDF (223 kB) Citations (3)
References:
Abstract: We study equations of the form
utt+Lu+b(x,t)ut=a(x,t)|u|σ1u,ut+Lu=a(x,t)|u|σ1u,
where L is a uniformly elliptic operator and 0<σ<1. In the half-cylinder Π0,={(x,t):x=(x1,,xn)Ω, t>0}, where ΩRn is a bounded domain, we consider solutions satisfying the homogeneous Neumann condition for xΩ and t>0. We find conditions under which these solutions have compact support and prove statements of the following type: u(x,t)=o(tγ) as t, then there exists a T such that u(x,t)0 for t>T. In this case γ depends on the coefficients of the equation and on the exponent σ.
Received: 19.02.1996
Revised: 23.04.1997
English version:
Mathematical Notes, 1997, Volume 62, Issue 5, Pages 586–595
DOI: https://doi.org/10.1007/BF02361297
Bibliographic databases:
UDC: 517.956
Language: Russian
Citation: G. V. Grishina, “Compactness of support of solutions to nonlinear second-order elliptic and parabolic equations in a half-cylinder”, Mat. Zametki, 62:5 (1997), 700–711; Math. Notes, 62:5 (1997), 586–595
Citation in format AMSBIB
\Bibitem{Gri97}
\by G.~V.~Grishina
\paper Compactness of support of solutions to nonlinear second-order elliptic and parabolic equations in a half-cylinder
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 5
\pages 700--711
\mathnet{http://mi.mathnet.ru/mzm1657}
\crossref{https://doi.org/10.4213/mzm1657}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1627931}
\zmath{https://zbmath.org/?q=an:0918.35012}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 5
\pages 586--595
\crossref{https://doi.org/10.1007/BF02361297}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075396200008}
Linking options:
  • https://www.mathnet.ru/eng/mzm1657
  • https://doi.org/10.4213/mzm1657
  • https://www.mathnet.ru/eng/mzm/v62/i5/p700
  • This publication is cited in the following 3 articles:
    1. Grishina G.V., “O lokalizatsii nositelya i nerealizuemykh usloviyakh rosta reshenii polulineinykh ellipticheskikh uravnenii vtorogo poryadka v neogranichennykh oblastyakh”, Vestnik moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. seriya: estestvennye nauki, 2012, 15–19  elib
    2. Grishina G., “Asymptotic Behaviour of Solutions to Semilinear Elliptic Equations in Unbounded Domains”, Equadiff 2003: International Conference on Differential Equations, eds. Dumortier F., Broer H., Mawhin J., Vanderbauwhede A., Lunel S., World Scientific Publ Co Pte Ltd, 2005, 290–292  crossref  mathscinet  zmath  isi
    3. Grishina, GV, “Solutions of second-order elliptic and parabolic equations of Emden-Fowler type in unbounded domains”, Russian Journal of Mathematical Physics, 9:3 (2002), 253  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:515
    Full-text PDF :232
    References:88
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025