Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 3, Pages 372–382
DOI: https://doi.org/10.4213/mzm1619
(Mi mzm1619)
 

This article is cited in 4 scientific papers (total in 4 papers)

Approximation by harmonic functions in the Cm-Norm and harmonic Cm-capacity of compact sets in Rn

Yu. A. Gorokhov

M. V. Lomonosov Moscow State University
Full-text PDF (231 kB) Citations (4)
References:
Abstract: We study the function Λm(X), 0<m<1, of compact sets X in Rn, n2, defined as the distance in the space Cm(X)lipm(X) from the function |x|2 to the subspace Hm(X) which is the closure in Cm(X) of the class of functions harmonic in the neighborhood of X (each function in its own neighborhood). We prove the equivalence of the conditions Λm(X)=0 and Cm(X)=Hm(X). We derive an estimate from above that depends only on the geometrical properties of the set X (on its volume).
Received: 01.11.1995
English version:
Mathematical Notes, 1997, Volume 62, Issue 3, Pages 314–322
DOI: https://doi.org/10.1007/BF02360872
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: Yu. A. Gorokhov, “Approximation by harmonic functions in the Cm-Norm and harmonic Cm-capacity of compact sets in Rn”, Mat. Zametki, 62:3 (1997), 372–382; Math. Notes, 62:3 (1997), 314–322
Citation in format AMSBIB
\Bibitem{Gor97}
\by Yu.~A.~Gorokhov
\paper Approximation by harmonic functions in the $C^m$-Norm and harmonic $C^m$-capacity of compact sets in $\mathbb R^n$
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 3
\pages 372--382
\mathnet{http://mi.mathnet.ru/mzm1619}
\crossref{https://doi.org/10.4213/mzm1619}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1620062}
\zmath{https://zbmath.org/?q=an:0921.41010}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 3
\pages 314--322
\crossref{https://doi.org/10.1007/BF02360872}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000072500900006}
Linking options:
  • https://www.mathnet.ru/eng/mzm1619
  • https://doi.org/10.4213/mzm1619
  • https://www.mathnet.ru/eng/mzm/v62/i3/p372
  • This publication is cited in the following 4 articles:
    1. Paul Gauthier, Petr V. Paramonov, Fields Institute Communications, 81, New Trends in Approximation Theory, 2018, 71  crossref
    2. Catherine Bénéteau, Dmitry Khavinson, “The Isoperimetric Inequality via Approximation Theory and Free Boundary Problems”, Comput. Methods Funct. Theory, 6:2 (2006), 253  crossref
    3. A. M. Voroncov, “Estimates of $C^m$-Capacity of Compact Sets in $\mathbb{R}^N$”, Math. Notes, 75:6 (2004), 751–764  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. A. M. Voroncov, “Joint Approximations of Distributions in Banach Spaces”, Math. Notes, 73:2 (2003), 168–182  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:479
    Full-text PDF :191
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025