Abstract:
We study the solvability of the integral equation
f(x)=g(x)+∫∞0T1(x−t)f(t)dt+∫0−∞T2(x−t)f(t)dt,x∈R,
where f∈Lloc1(R) is the unknown function and g, T1 and T2 are given functions satisfying the conditions
g∈L1(R),0⩽Tj∈L1(R),∫∞−∞Tj(t)dt=1,j=1,2.
Most attention is paid to the nontrivial solvability of the homogeneous equation
s(x)=∫∞0T1(x−t)s(t)dt+∫0−∞T2(x−t)s(t)dt,x∈R.
Citation:
L. G. Arabadzhyan, “On a conservative integral equation with two kernels”, Mat. Zametki, 62:3 (1997), 323–331; Math. Notes, 62:3 (1997), 271–277
\Bibitem{Ara97}
\by L.~G.~Arabadzhyan
\paper On a conservative integral equation with two kernels
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 3
\pages 323--331
\mathnet{http://mi.mathnet.ru/mzm1614}
\crossref{https://doi.org/10.4213/mzm1614}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1620042}
\zmath{https://zbmath.org/?q=an:0914.45003}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 3
\pages 271--277
\crossref{https://doi.org/10.1007/BF02360867}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000072500900001}
Linking options:
https://www.mathnet.ru/eng/mzm1614
https://doi.org/10.4213/mzm1614
https://www.mathnet.ru/eng/mzm/v62/i3/p323
This publication is cited in the following 7 articles:
L. G. Arabadzhyan, S. A. Khachatryan, “On a Homogeneous Integral Equation with Two Kernels”, J. Contemp. Mathemat. Anal., 53:1 (2018), 41
Ter-Avetisyan V.V., “On Dual Integral Equations in the Semiconservative Case”, J. Contemp. Math. Anal.-Armen. Aca., 47:2 (2012), 62–69
Barsegyan A.G., “On the Solution of the Convolution Equation with Two Kernels”, Differ. Equ., 48:5 (2012), 756–759
A. G. Barsegyan, “O reshenii uravneniya s dvumya yadrami, predstavlennymi cherez eksponenty”, Ufimsk. matem. zhurn., 3:4 (2011), 28–38
N. B. Yengibaryan, A. G. Barseghyan, “Semiconservative Systems of Integral Equations with Two Kernels”, International Journal of Mathematics and Mathematical Sciences, 2011 (2011), 1
Wolfersdorf, LV, “On a class of nonlinear cross-correlation equations”, Mathematische Nachrichten, 269-70 (2004), 231
von Wolfersdorf, L, “A class of linear integral equations and systems with sum and difference kernel”, Zeitschrift fur Analysis und Ihre Anwendungen, 22:3 (2003), 647