Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 3, Pages 323–331
DOI: https://doi.org/10.4213/mzm1614
(Mi mzm1614)
 

This article is cited in 7 scientific papers (total in 7 papers)

On a conservative integral equation with two kernels

L. G. Arabadzhyan

Byurakan Astrophysical Observatory, National Academy of Sciences of Armenia
Full-text PDF (175 kB) Citations (7)
References:
Abstract: We study the solvability of the integral equation
$$ f(x)=g(x)+\int_0^\infty T_1(x-t)f(t)\,dt+\int_{-\infty}^0T_2(x-t)f(t)\,dt,\qquad x\in\mathbb R, $$
where $f\in L_1^{\operatorname{loc}}(\mathbb R)$ is the unknown function and $g$, $T_1$ and $T_2$ are given functions satisfying the conditions
$$ g\in L_1(\mathbb R),\quad 0\le T_j\in L_1(\mathbb R),\quad \int_{-\infty}^\infty T_j(t)\,dt=1,\qquad j=1,2. $$
Most attention is paid to the nontrivial solvability of the homogeneous equation
$$ s(x)=\int_0^\infty T_1(x-t)s(t)\,dt+\int_{-\infty}^0T_2(x-t)s(t)\,dt,\qquad x\in\mathbb R. $$
Received: 14.12.1995
English version:
Mathematical Notes, 1997, Volume 62, Issue 3, Pages 271–277
DOI: https://doi.org/10.1007/BF02360867
Bibliographic databases:
UDC: 517
Language: Russian
Citation: L. G. Arabadzhyan, “On a conservative integral equation with two kernels”, Mat. Zametki, 62:3 (1997), 323–331; Math. Notes, 62:3 (1997), 271–277
Citation in format AMSBIB
\Bibitem{Ara97}
\by L.~G.~Arabadzhyan
\paper On a conservative integral equation with two kernels
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 3
\pages 323--331
\mathnet{http://mi.mathnet.ru/mzm1614}
\crossref{https://doi.org/10.4213/mzm1614}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1620042}
\zmath{https://zbmath.org/?q=an:0914.45003}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 3
\pages 271--277
\crossref{https://doi.org/10.1007/BF02360867}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000072500900001}
Linking options:
  • https://www.mathnet.ru/eng/mzm1614
  • https://doi.org/10.4213/mzm1614
  • https://www.mathnet.ru/eng/mzm/v62/i3/p323
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025