Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 3, Pages 323–331
DOI: https://doi.org/10.4213/mzm1614
(Mi mzm1614)
 

This article is cited in 7 scientific papers (total in 7 papers)

On a conservative integral equation with two kernels

L. G. Arabadzhyan

Byurakan Astrophysical Observatory, National Academy of Sciences of Armenia
Full-text PDF (175 kB) Citations (7)
References:
Abstract: We study the solvability of the integral equation
f(x)=g(x)+0T1(xt)f(t)dt+0T2(xt)f(t)dt,xR,
where fLloc1(R) is the unknown function and g, T1 and T2 are given functions satisfying the conditions
gL1(R),0TjL1(R),Tj(t)dt=1,j=1,2.
Most attention is paid to the nontrivial solvability of the homogeneous equation
s(x)=0T1(xt)s(t)dt+0T2(xt)s(t)dt,xR.
Received: 14.12.1995
English version:
Mathematical Notes, 1997, Volume 62, Issue 3, Pages 271–277
DOI: https://doi.org/10.1007/BF02360867
Bibliographic databases:
UDC: 517
Language: Russian
Citation: L. G. Arabadzhyan, “On a conservative integral equation with two kernels”, Mat. Zametki, 62:3 (1997), 323–331; Math. Notes, 62:3 (1997), 271–277
Citation in format AMSBIB
\Bibitem{Ara97}
\by L.~G.~Arabadzhyan
\paper On a conservative integral equation with two kernels
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 3
\pages 323--331
\mathnet{http://mi.mathnet.ru/mzm1614}
\crossref{https://doi.org/10.4213/mzm1614}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1620042}
\zmath{https://zbmath.org/?q=an:0914.45003}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 3
\pages 271--277
\crossref{https://doi.org/10.1007/BF02360867}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000072500900001}
Linking options:
  • https://www.mathnet.ru/eng/mzm1614
  • https://doi.org/10.4213/mzm1614
  • https://www.mathnet.ru/eng/mzm/v62/i3/p323
  • This publication is cited in the following 7 articles:
    1. L. G. Arabadzhyan, S. A. Khachatryan, “On a Homogeneous Integral Equation with Two Kernels”, J. Contemp. Mathemat. Anal., 53:1 (2018), 41  crossref
    2. Ter-Avetisyan V.V., “On Dual Integral Equations in the Semiconservative Case”, J. Contemp. Math. Anal.-Armen. Aca., 47:2 (2012), 62–69  crossref  mathscinet  zmath  isi  scopus
    3. Barsegyan A.G., “On the Solution of the Convolution Equation with Two Kernels”, Differ. Equ., 48:5 (2012), 756–759  crossref  mathscinet  zmath  isi  elib  scopus
    4. A. G. Barsegyan, “O reshenii uravneniya s dvumya yadrami, predstavlennymi cherez eksponenty”, Ufimsk. matem. zhurn., 3:4 (2011), 28–38  mathnet  zmath
    5. N. B. Yengibaryan, A. G. Barseghyan, “Semiconservative Systems of Integral Equations with Two Kernels”, International Journal of Mathematics and Mathematical Sciences, 2011 (2011), 1  crossref
    6. Wolfersdorf, LV, “On a class of nonlinear cross-correlation equations”, Mathematische Nachrichten, 269-70 (2004), 231  crossref  mathscinet  zmath  isi  scopus
    7. von Wolfersdorf, L, “A class of linear integral equations and systems with sum and difference kernel”, Zeitschrift fur Analysis und Ihre Anwendungen, 22:3 (2003), 647  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:514
    Full-text PDF :209
    References:84
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025