|
This article is cited in 7 scientific papers (total in 7 papers)
On a conservative integral equation with two kernels
L. G. Arabadzhyan Byurakan Astrophysical Observatory, National Academy of Sciences of Armenia
Abstract:
We study the solvability of the integral equation
$$
f(x)=g(x)+\int_0^\infty T_1(x-t)f(t)\,dt+\int_{-\infty}^0T_2(x-t)f(t)\,dt,\qquad x\in\mathbb R,
$$
where $f\in L_1^{\operatorname{loc}}(\mathbb R)$ is the unknown function and $g$, $T_1$ and $T_2$ are given functions satisfying the conditions
$$
g\in L_1(\mathbb R),\quad
0\le T_j\in L_1(\mathbb R),\quad
\int_{-\infty}^\infty T_j(t)\,dt=1,\qquad
j=1,2.
$$
Most attention is paid to the nontrivial solvability of the homogeneous equation
$$
s(x)=\int_0^\infty T_1(x-t)s(t)\,dt+\int_{-\infty}^0T_2(x-t)s(t)\,dt,\qquad
x\in\mathbb R.
$$
Received: 14.12.1995
Citation:
L. G. Arabadzhyan, “On a conservative integral equation with two kernels”, Mat. Zametki, 62:3 (1997), 323–331; Math. Notes, 62:3 (1997), 271–277
Linking options:
https://www.mathnet.ru/eng/mzm1614https://doi.org/10.4213/mzm1614 https://www.mathnet.ru/eng/mzm/v62/i3/p323
|
|