Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 3, Pages 332–342
DOI: https://doi.org/10.4213/mzm1615
(Mi mzm1615)
 

This article is cited in 4 scientific papers (total in 4 papers)

An extremal problem for algebraic polynomials with zero mean value on an interval

V. V. Arestov, V. Yu. Raevskaya

Ural State University
Full-text PDF (215 kB) Citations (4)
References:
Abstract: Let $\mathscr P_n^0(h)$ be the set of algebraic polynomials of degree $n$ with real coefficients and with zero mean value (with weight $h$) on the interval $[-1,1]$:
$$ \int_{-1}^1h(x)p_n(x)dx=0; $$
here $h$ is a function which is summable, nonnegative, and nonzero on a set of positive measure on $[-1,1]$. We study the problem of the least possible value
$$ i_n(h)=\inf\{\mu(p_n):p_n\in\mathscr P_n^0\} $$
of the measure $\mu(p_n)=\operatorname{mes}\{x\in[-1,1]:p_n(x)\ge0\}$ of the set of points of the interval at which the polynomial $p_n\in\mathscr P_n^0$ is nonnegative. We find the exact value of $i_n(h)$ under certain restrictions on the weight $h$. In particular, the Jacobi weight
$$ h^{(\alpha,\beta)}(x)=(1-x)^\alpha(1+x)^\beta $$
satisfies these restrictions provided that $-1<\alpha,\beta\le0$.
Received: 15.11.1995
Revised: 10.11.1996
English version:
Mathematical Notes, 1997, Volume 62, Issue 3, Pages 278–287
DOI: https://doi.org/10.1007/BF02360868
Bibliographic databases:
UDC: 517.518.86
Language: Russian
Citation: V. V. Arestov, V. Yu. Raevskaya, “An extremal problem for algebraic polynomials with zero mean value on an interval”, Mat. Zametki, 62:3 (1997), 332–342; Math. Notes, 62:3 (1997), 278–287
Citation in format AMSBIB
\Bibitem{AreRae97}
\by V.~V.~Arestov, V.~Yu.~Raevskaya
\paper An extremal problem for algebraic polynomials with zero mean value on an interval
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 3
\pages 332--342
\mathnet{http://mi.mathnet.ru/mzm1615}
\crossref{https://doi.org/10.4213/mzm1615}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1620046}
\zmath{https://zbmath.org/?q=an:0917.26012}
\elib{https://elibrary.ru/item.asp?id=13268376}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 3
\pages 278--287
\crossref{https://doi.org/10.1007/BF02360868}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000072500900002}
Linking options:
  • https://www.mathnet.ru/eng/mzm1615
  • https://doi.org/10.4213/mzm1615
  • https://www.mathnet.ru/eng/mzm/v62/i3/p332
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025