Abstract:
Dually discriminator algebras are considered up to clones generated by the algebra operations. In terms of binary relations, all clones of the operators on a finite set that contain the Pixley dual discriminator are efficiently described. As a consequence, a similar clone classification of quasi-primal algebras with finite support is determined.
This publication is cited in the following 9 articles:
N. L. Polyakov, M. V. Shamolin, “Reduction Theorems in the Social Choice Theory”, J Math Sci, 272:5 (2023), 667
N. L. Polyakov, M. V. Shamolin, “Teoremy o reduktsii v teorii kollektivnogo vybora”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, M., 2020, 46–51
S. S. Marchenkov, “Closed classed of three-valued logic that contain essentially multiplace functions”, Discrete Math. Appl., 25:4 (2015), 233–240
Marchenkov S.S., “Fe-klassifikatsiya funktsii mnogoznachnoi logiki”, Vestnik Moskovskogo universiteta. Seriya 15: Vychislitelnaya matematika i kibernetika, 2 (2011), 32–39
Fe-classification of many-valued logic functions
S. S. Marchenkov, “FE classification of functions of many-valued logic”, MoscowUniv.Comput.Math.Cybern., 35:2 (2011), 89
S. S. Marchenkov, “The closure operator in many-valued logic based on functional equations”, J. Appl. Industr. Math., 5:3 (2011), 383–390
J. Appl. Industr. Math., 2:4 (2008), 542–549
S. S. Marchenkov, “Equational closure”, Discrete Math. Appl., 15:3 (2005), 289–298
Marchenkov, SS, “A-classification of idempotent functions of many-valued logic”, Discrete Applied Mathematics, 135:1–3 (2004), 183