Abstract:
In this paper we study the dependence of the local geometry of real-analytic hypersurfaces in Cn on the dimension of the group of biholomorphic automorphisms of this surface. We also classify the hypersurfaces in terms of this group. We present some examples showing that the classes of the given construction are not empty. We find a new formulation of the Freeman theorem on the so-called straightening of a real-analytic CR-submanifold in Cn with degenerate Levi form of constant rank.
Citation:
A. S. Labovskii, “On dimensions of the groups of biholomorphic automorphisms of real-analytic hypersurfaces”, Mat. Zametki, 61:3 (1997), 349–358; Math. Notes, 61:3 (1997), 287–294
\Bibitem{Lab97}
\by A.~S.~Labovskii
\paper On dimensions of the groups of biholomorphic automorphisms of real-analytic hypersurfaces
\jour Mat. Zametki
\yr 1997
\vol 61
\issue 3
\pages 349--358
\mathnet{http://mi.mathnet.ru/mzm1509}
\crossref{https://doi.org/10.4213/mzm1509}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1619747}
\zmath{https://zbmath.org/?q=an:0927.32026}
\transl
\jour Math. Notes
\yr 1997
\vol 61
\issue 3
\pages 287--294
\crossref{https://doi.org/10.1007/BF02355410}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XR25700004}
Linking options:
https://www.mathnet.ru/eng/mzm1509
https://doi.org/10.4213/mzm1509
https://www.mathnet.ru/eng/mzm/v61/i3/p349
This publication is cited in the following 6 articles:
Boris Kruglikov, Andrea Santi, “On 3-nondegenerate CR manifolds in dimension 7 (I): The transitive case”, Journal für die reine und angewandte Mathematik (Crelles Journal), 2025
Martin Kolář, Ilya Kossovskiy, David Sykes, “New examples of 2‐nondegenerate real hypersurfaces in CNCN with arbitrary nilpotent symbols”, Journal of London Math Soc, 110:2 (2024)
V. K. Beloshapka, “Model CR Surfaces: Weighted Approach”, Russ. J. Math. Phys., 30:1 (2023), 25
V. K. Beloshapka, “Modification of Poincaré's
construction and its application in CR-geometry of hypersurfaces in C4”, Izv. Math., 86:5 (2022), 852–875
Beloshapka V.K., “Cr-Manifolds of Finite Bloom-Graham Type: the Model Surface Method”, Russ. J. Math. Phys., 27:2 (2020), 155–174
V. K. Beloshapka, “Real submanifolds in complex space: polynomial models, automorphisms, and classification problems”, Russian Math. Surveys, 57:1 (2002), 1–41