Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 76, Issue 5, Pages 714–722
DOI: https://doi.org/10.4213/mzm141
(Mi mzm141)
 

This article is cited in 17 scientific papers (total in 17 papers)

Integrity of Total Graphs via Certain Parameters

P. Dündar, A. Aytaç
References:
Abstract: Communication networks have been characterized by high levels of service reliability. Links cuts, node interruptions, software errors or hardware failures, and transmission failures at various points can interrupt service for long periods of time. In communication networks, greater degrees of stability or less vulnerability is required. The vulnerability of communication network measures the resistance of the network to the disruption of operation after the failure of certain stations or communication links. If we think of a graph G as modeling a network, many graph-theoretic parameters can be used to describe the stability of communication networks, including connectivity, integrity, and tenacity. We consider two graphs with the same connectivity, but with unequal orders of theirs largest components. Then these two graphs must be different in respect to stability. How can we measure that property? The idea behind the answer is the concept of integrity, which is different from connectivity. Total graphs constitute a large class of graphs. In this paper, we study the integrity of total graphs via some graph parameters.
Received: 02.04.2003
English version:
Mathematical Notes, 2004, Volume 76, Issue 5, Pages 665–672
DOI: https://doi.org/10.1023/B:MATN.0000049665.92885.26
Bibliographic databases:
UDC: 519.1
Language: Russian
Citation: P. Dündar, A. Aytaç, “Integrity of Total Graphs via Certain Parameters”, Mat. Zametki, 76:5 (2004), 714–722; Math. Notes, 76:5 (2004), 665–672
Citation in format AMSBIB
\Bibitem{DunAyt04}
\by P.~D\"undar, A.~Ayta{\c c}
\paper Integrity of Total Graphs via Certain Parameters
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 5
\pages 714--722
\mathnet{http://mi.mathnet.ru/mzm141}
\crossref{https://doi.org/10.4213/mzm141}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2129337}
\zmath{https://zbmath.org/?q=an:1063.05114}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 5
\pages 665--672
\crossref{https://doi.org/10.1023/B:MATN.0000049665.92885.26}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226356700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-10444267220}
Linking options:
  • https://www.mathnet.ru/eng/mzm141
  • https://doi.org/10.4213/mzm141
  • https://www.mathnet.ru/eng/mzm/v76/i5/p714
  • This publication is cited in the following 17 articles:
    1. Cauê F. Teixeira da Silva, Daniel Posner, Renato Portugal, “Walking on vertices and edges by continuous-time quantum walk”, Quantum Inf Process, 22:2 (2023)  crossref
    2. Basavanagoud B., Jakkannavar P., Policepatil Sh., “Integrity of Total Transformation Graphs”, Electron. J. Graph Theory Appl., 9:2 (2021), 309–329  crossref  mathscinet  isi
    3. Basavanagoud B., Policepatil Sh., “Integrity of Wheel Related Graphs”, Punjab Univ. J. Math., 53:5 (2021), 329–338  crossref  mathscinet  isi
    4. Mariappan S., Ramalingam S., Raman S., Bacak-Turan G., “Domination Integrity and Efficient Fuzzy Graphs”, Neural Comput. Appl., 32:14 (2020), 10263–10273  crossref  isi  scopus
    5. Besirik A., Kilic E., “Domination Integrity of Some Graph Classes”, Rairo-Oper. Res., 53:5 (2019), 1721–1728  crossref  mathscinet  isi
    6. Dundar P. Aytac A. Kilic E., “Common-Neighbourhood of a Graph”, Bol. Soc. Parana. Mat., 35:1 (2017), 23–32  crossref  mathscinet  isi  scopus
    7. Kilic E., Dundar P., “Total Accessibility Number of Graphs”, Neural Netw. World, 27:3 (2017), 309–315  crossref  mathscinet  isi
    8. Mahde S.S., Mathad V., “Domination Integrity of Line Splitting Graph and Central Graph of Path, Cycle and Star Graphs”, Appl. Appl. Math., 11:1 (2016), 408–423  mathscinet  zmath  isi
    9. Vaidya S.K., Kothari N.J., “Domination Integrity of Splitting and Degree Splitting Graphs of Some Graphs”, Adv. Appl. Discret. Math., 17:2 (2016), 185–199  mathscinet  zmath  isi
    10. Mahde S.S., Mathad V., “Hub-Integrity of Splitting Graph and Duplication of Graph Elements”, TWMS J. Appl. Eng. Math., 6:2 (2016), 289–297  mathscinet  zmath  isi
    11. V. V. Bykova, “O merakh tselostnosti grafov: obzor”, PDM, 2014, no. 4(26), 96–111  mathnet
    12. Samir K. Vaidya, Nirang J. Kothari, “Domination Integrity of Splitting Graph of Path and Cycle”, ISRN Combinatorics, 2013 (2013), 1  crossref
    13. Samir K. Vaidya, Nirang J. Kothari, “Some New Results on Domination Integrity of Graphs”, OJDM, 02:03 (2012), 96  crossref
    14. Kilic E., Dundar P., “The edge-accessibility number via graph, operations & an algorithm”, Neural Network World, 17:3 (2007), 213–223  isi
    15. Mamut A., Vumar E., “A Note on the Integrity of Middle Graphs”, Discrete Geometry, Combinatorics and Graph Theory, Lecture Notes in Computer Science, 4381, eds. Akiyama J., Chen W., Kano M., Li X., Yu Q., Springer-Verlag Berlin, 2007, 130–134  crossref  mathscinet  zmath  isi  scopus  scopus
    16. Dundar P., Kilic E., “Two measures for the stability of Extended Fibonacci Cubes”, Neural Network World, 16:5 (2006), 411–419  isi
    17. Dündar P., “Augmented cubes and its connectivity numbers”, Neural Network World, 15:1 (2005), 1–8  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:443
    Full-text PDF :216
    References:56
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025