Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 76, Issue 5, Pages 723–731
DOI: https://doi.org/10.4213/mzm139
(Mi mzm139)
 

This article is cited in 8 scientific papers (total in 8 papers)

Uniform Convergence of Hyperbolic Partial Sums of Multiple Fourier Series

M. I. Dyachenko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (206 kB) Citations (8)
References:
Abstract: It follows from results of A. Yudin, V. Yudin, E. Belinskii, and I. Liflyand that if $m\ge2$ and a $2\pi$-periodic (in each variable) function $f(\mathbf x)\in C(T^m)$ belongs to the Nikol'skii class $h_\infty^{(m-1)/2}(T^m)$, then its multiple Fourier series is uniformly convergent over hyperbolic crosses. In this paper, we establish the finality of this result. More precisely, there exists a function in the class $h_\infty^{(m-1)/2}(T^m)$ whose Fourier series is divergent over hyperbolic crosses at some point.
Received: 01.10.2003
English version:
Mathematical Notes, 2004, Volume 76, Issue 5, Pages 673–681
DOI: https://doi.org/10.1023/B:MATN.0000049666.00784.9d
Bibliographic databases:
UDC: 517.51.475
Language: Russian
Citation: M. I. Dyachenko, “Uniform Convergence of Hyperbolic Partial Sums of Multiple Fourier Series”, Mat. Zametki, 76:5 (2004), 723–731; Math. Notes, 76:5 (2004), 673–681
Citation in format AMSBIB
\Bibitem{Dya04}
\by M.~I.~Dyachenko
\paper Uniform Convergence of Hyperbolic Partial Sums of Multiple Fourier Series
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 5
\pages 723--731
\mathnet{http://mi.mathnet.ru/mzm139}
\crossref{https://doi.org/10.4213/mzm139}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2129338}
\zmath{https://zbmath.org/?q=an:1076.42006}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 5
\pages 673--681
\crossref{https://doi.org/10.1023/B:MATN.0000049666.00784.9d}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226356700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-10344232711}
Linking options:
  • https://www.mathnet.ru/eng/mzm139
  • https://doi.org/10.4213/mzm139
  • https://www.mathnet.ru/eng/mzm/v76/i5/p723
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024