Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 64, Issue 2, Pages 212–217
DOI: https://doi.org/10.4213/mzm1388
(Mi mzm1388)
 

This article is cited in 5 scientific papers (total in 5 papers)

The Cauchy problem for the system of thermoelasticity equations in space

T. I. Ishankulov, O. I. Makhmudov

A. Navoi Samarkand State University
Full-text PDF (172 kB) Citations (5)
References:
Abstract: We consider the problem of analytic continuation of the solution of the system of thermoelasticity equations in a bounded three-dimensional domain on the basis of known values of the solution and the corresponding stress on a part of the boundary, i.e., the Cauchy problem. We construct an approximate solution of the problem based on the method of Carleman's function.
Received: 18.04.1996
English version:
Mathematical Notes, 1998, Volume 64, Issue 2, Pages 181–185
DOI: https://doi.org/10.1007/BF02310303
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: T. I. Ishankulov, O. I. Makhmudov, “The Cauchy problem for the system of thermoelasticity equations in space”, Mat. Zametki, 64:2 (1998), 212–217; Math. Notes, 64:2 (1998), 181–185
Citation in format AMSBIB
\Bibitem{IshMak98}
\by T.~I.~Ishankulov, O.~I.~Makhmudov
\paper The Cauchy problem for the system of thermoelasticity equations in space
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 2
\pages 212--217
\mathnet{http://mi.mathnet.ru/mzm1388}
\crossref{https://doi.org/10.4213/mzm1388}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1680957}
\zmath{https://zbmath.org/?q=an:0960.35003}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 2
\pages 181--185
\crossref{https://doi.org/10.1007/BF02310303}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078147600024}
Linking options:
  • https://www.mathnet.ru/eng/mzm1388
  • https://doi.org/10.4213/mzm1388
  • https://www.mathnet.ru/eng/mzm/v64/i2/p212
  • This publication is cited in the following 5 articles:
    1. Marin L., Karageorghis A., Lesnic D., Johansson B.T., “The method of fundamental solutions for problems in static thermo-elasticity with incomplete boundary data”, Inverse Probl. Sci. Eng., 25:5 (2017), 652–673  crossref  mathscinet  zmath  isi  scopus
    2. O. I. Makhmudov, I. É. Niezov, “On the Cauchy problem for a multidimensional system of Lamé equations”, Russian Math. (Iz. VUZ), 50:4 (2006), 39–49  mathnet  mathscinet  zmath  elib
    3. O. I. Makhmudov, I. E. Niyozov, “The Cauchy problem for the Lame system in infinite domains in”, Journal of Inverse and Ill-posed Problems, 14:9 (2006), 905  crossref
    4. Makhmudov O., Niyozov I., “Regularization of a Solution to the Cauchy Problem for the System of Thermoelasticity”, Complex Analysis and Dynamical Systems II, Contemporary Mathematics Series, 382, eds. Agranovksy M., Karp L., Shoikhet D., Amer Mathematical Soc, 2005, 285–289  crossref  mathscinet  zmath  isi
    5. O. I. Makhmudov, “Cauchy Problem for Elliptic Systems in the Space $\mathbb R^m$”, Math. Notes, 75:6 (2004), 794–804  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:405
    Full-text PDF :226
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025