Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 64, Issue 2, Pages 207–211
DOI: https://doi.org/10.4213/mzm1387
(Mi mzm1387)
 

This article is cited in 1 scientific paper (total in 1 paper)

Topological groups in which each nowhere dense subset is closed

E. G. Zelenyuk

Lutsk Industrial Intitute
Full-text PDF (146 kB) Citations (1)
References:
Abstract: Assuming the validity of the combinatorial principle p=C, which follows from Martin's axiom, it is proved that an arbitrary nondiscrete metrizable group topology on an Abelian group can be strengthened to a nondiscrete group topology in which each nowhere dense subset is closed.
Received: 18.11.1996
English version:
Mathematical Notes, 1998, Volume 64, Issue 2, Pages 177–180
DOI: https://doi.org/10.1007/BF02310302
Bibliographic databases:
UDC: 512.546
Language: Russian
Citation: E. G. Zelenyuk, “Topological groups in which each nowhere dense subset is closed”, Mat. Zametki, 64:2 (1998), 207–211; Math. Notes, 64:2 (1998), 177–180
Citation in format AMSBIB
\Bibitem{Zel98}
\by E.~G.~Zelenyuk
\paper Topological groups in which each nowhere dense subset is closed
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 2
\pages 207--211
\mathnet{http://mi.mathnet.ru/mzm1387}
\crossref{https://doi.org/10.4213/mzm1387}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1680961}
\zmath{https://zbmath.org/?q=an:0916.22002}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 2
\pages 177--180
\crossref{https://doi.org/10.1007/BF02310302}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078147600023}
Linking options:
  • https://www.mathnet.ru/eng/mzm1387
  • https://doi.org/10.4213/mzm1387
  • https://www.mathnet.ru/eng/mzm/v64/i2/p207
  • This publication is cited in the following 1 articles:
    1. Ultrafilters and Topologies on Groups, 2011, 211  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:349
    Full-text PDF :189
    References:41
    First page:1
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025