Abstract:
A characterization of the traces in a broad class of weights on von Neumann algebras is obtained. A new property of the “domain ideals” of these traces is proved. In the semifinite case, a relation for a faithful normal trace is established. This result is new even for the algebra of all bounded operators on a Hilbert space. Applications of the main result to the structure theory of von Neumann algebras and to the Köthe duality theory for ideal spaces of Segal measurable operators are given.
Citation:
A. M. Bikchentaev, “On a property of Lp spaces on semifinite von Neumann algebras”, Mat. Zametki, 64:2 (1998), 185–190; Math. Notes, 64:2 (1998), 159–163
\Bibitem{Bik98}
\by A.~M.~Bikchentaev
\paper On a property of $L_p$ spaces on semifinite von Neumann algebras
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 2
\pages 185--190
\mathnet{http://mi.mathnet.ru/mzm1384}
\crossref{https://doi.org/10.4213/mzm1384}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1680973}
\zmath{https://zbmath.org/?q=an:0927.46046}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 2
\pages 159--163
\crossref{https://doi.org/10.1007/BF02310299}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078147600020}
Linking options:
https://www.mathnet.ru/eng/mzm1384
https://doi.org/10.4213/mzm1384
https://www.mathnet.ru/eng/mzm/v64/i2/p185
This publication is cited in the following 38 articles:
A. M. Bikchentaev, Mahmoud Khadour, “Differences of idempotents in C<sup>∗</sup>-algebras and the quantum Hall effect. II. Unbounded idempotents”, jour, 1:4 (2024), 35
Ábel Komálovics, Lajos Molnár, “On a parametric family of distance measures that includes the Hellinger and the Bures distances”, Journal of Mathematical Analysis and Applications, 529:2 (2024), 127226
A. M. Bikchentaev, M. F. Darwish, M. A. Muratov, “Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra. II”, Ann. Funct. Anal., 15:3 (2024)
A. M. Bikchentaev, Mahmoud Khadour, “Differences of Idempotents in C∗-algebras and the Quantum Hall Effect. II. Unbounded Idempotents”, Lobachevskii J Math, 45:4 (2024), 1800
Mariana Dalloul, “Characterization of Tracial Functionals by Inequalities for the Spread of a Matrix”, Lobachevskii J Math, 45:6 (2024), 2478
Airat Bikchentaev, Springer Proceedings in Mathematics & Statistics, 390, Infinite Dimensional Analysis, Quantum Probability and Applications, 2022, 279
Alhasan H. Fawwaz Kh., “Characterization of Tracial Functionals on Von Neumann Algebras”, Lobachevskii J. Math., 42:10, SI (2021), 2273–2279
Bikchentaev A.M. Sherstnev A.N., “Studies on Noncommutative Measure Theory in Kazan University (1968-2018)”, Int. J. Theor. Phys., 60:2, SI (2021), 585–596
Bikchentaev A., “Trace Inequalities For Rickart C-Algebras”, Positivity, 25:5 (2021), 1943–1957
A. M. Bikchentaev, “Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra”, Ufa Math. J., 11:3 (2019), 3–10
Bourne C., Rennie A., “Chern Numbers, Localisation and the Bulk-Edge Correspondence For Continuous Models of Topological Phases”, Math. Phys. Anal. Geom., 21:3 (2018), 16
A. M. Bikchentaev, “Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra”, Siberian Math. J., 59:2 (2018), 243–251
A. M. Bikchentaev, “Differences of idempotents in C∗-algebras and the quantum Hall effect”, Theoret. and Math. Phys., 195:1 (2018), 557–562
Abed S.A., “An Inequality For Projections and Convex Functions”, Lobachevskii J. Math., 39:9 (2018), 1287–1292
A. M. Bikchentaev, “Trace and Commutators of Measurable Operators Affiliated to a von Neumann Algebra”, J. Math. Sci. (N. Y.), 252:1 (2021), 8–19
Bikchentaev A.M., “On Tau-Compactness of Products of Tau-Measurable Operators”, Int. J. Theor. Phys., 56:12 (2017), 3819–3830
A. M. Bikchentaev, “On the τ-compactness of products of τ-measurable operators adjoint to semi-finite von Neumann algebras”, J. Math. Sci. (N. Y.), 241:4 (2019), 458–468
A. M. Bikchentaev, “Inequality for a Trace on a Unital C∗-Algebra”, Math. Notes, 99:4 (2016), 487–491
Bikchentaev A., “Integrable products of measurable operators”, Lobachevskii J. Math., 37:4, SI (2016), 397–403
Bikchentaev A.M., “Trace and integrable operators affiliated with a semifinite von Neumann algebra”, Dokl. Math., 93:1 (2016), 16–19