Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 64, Issue 2, Pages 180–184
DOI: https://doi.org/10.4213/mzm1383
(Mi mzm1383)
 

Fourier series of additive vector measures and their term-by-term differentiation

A. G. Areshkina

Russian State Gidrometeorology Institute
References:
Abstract: On a measurable space $(T,\Sigma,\mu)$ we choose an additive measure $\nu\colon\Sigma\to Z$ ($Z$ is a Banach space) with the following property: for all $e\in\Sigma$, we have $\int _exd\nu=0\implies x\overset{\mu}{\sim} 0$; this measure defines an indefinite integral over the measure $\nu$ on $L^2(T,\Sigma,\mu)$. We prove that if $\{\tau_n(t)\}_{n=1}^\infty$ is an orthonormal basis in $L^2$ and $\theta _n(e)=\int_e\tau_n(t)d\nu$, then any additive measure $\nu\colon\Sigma\to Z$ whose Radon–Nikodým derivative $d\varphi/d\nu$ belongs to $L^2$ is uniquely expandable in a series $\varphi(e)=\sum_{n=1}^\infty\alpha_n\theta_n(e)$ that converges to $\varphi(e)$ uniformly with respect to $e\in\Sigma$ can be differentiated term-by-term, and satisfies $\sum_{n=1}^\infty\alpha_n^2<\infty$. In the case $L^2[0,2\pi]$, $Z=\mathbb R$, the Fourier series of a $2\pi$-periodic absolutely continuous function $F(t)$ such that $F'(t)\in L^2[0,2\pi]$, is superuniformly convergent to $F(t)$.
Received: 10.05.1994
English version:
Mathematical Notes, 1998, Volume 64, Issue 2, Pages 154–158
DOI: https://doi.org/10.1007/BF02310298
Bibliographic databases:
UDC: 517.518
Language: Russian
Citation: A. G. Areshkina, “Fourier series of additive vector measures and their term-by-term differentiation”, Mat. Zametki, 64:2 (1998), 180–184; Math. Notes, 64:2 (1998), 154–158
Citation in format AMSBIB
\Bibitem{Are98}
\by A.~G.~Areshkina
\paper Fourier series of additive vector measures and their term-by-term differentiation
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 2
\pages 180--184
\mathnet{http://mi.mathnet.ru/mzm1383}
\crossref{https://doi.org/10.4213/mzm1383}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1680977}
\zmath{https://zbmath.org/?q=an:0922.28011}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 2
\pages 154--158
\crossref{https://doi.org/10.1007/BF02310298}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078147600019}
Linking options:
  • https://www.mathnet.ru/eng/mzm1383
  • https://doi.org/10.4213/mzm1383
  • https://www.mathnet.ru/eng/mzm/v64/i2/p180
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024