Abstract:
We consider dynamical systems with two degrees of freedom whose configuration space is a torus and which admit first integrals polynomial in velocity. We obtain constructive criteria for the existence of conditional linear and quadratic integrals on the two-dimensional torus. Moreover, we show that under some additional conditions the degree of an “irreducible” integral of the geodesic flow on the torus does not exceed 2.
Citation:
N. V. Denisova, “Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus”, Mat. Zametki, 64:1 (1998), 37–44; Math. Notes, 64:1 (1998), 31–37
\Bibitem{Den98}
\by N.~V.~Denisova
\paper Integrals polynomial in velocity for two-degrees-of-freedom dynamical systems whose configuration space is a torus
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 1
\pages 37--44
\mathnet{http://mi.mathnet.ru/mzm1370}
\crossref{https://doi.org/10.4213/mzm1370}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1694006}
\zmath{https://zbmath.org/?q=an:0939.37031}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 1
\pages 31--37
\crossref{https://doi.org/10.1007/BF02307193}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078147600005}
Linking options:
https://www.mathnet.ru/eng/mzm1370
https://doi.org/10.4213/mzm1370
https://www.mathnet.ru/eng/mzm/v64/i1/p37
This publication is cited in the following 2 articles:
Kozlov, VV, “Topological obstructions to the existence of quantum conservation laws”, Doklady Mathematics, 71:2 (2005), 300
N. V. Denisova, V. V. Kozlov, “Polynomial integrals of reversible mechanical systems with a two-dimensional torus as the configuration space”, Sb. Math., 191:2 (2000), 189–208