Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 64, Issue 1, Pages 24–36
DOI: https://doi.org/10.4213/mzm1369
(Mi mzm1369)
 

This article is cited in 3 scientific papers (total in 3 papers)

Divergence almost everywhere of rectangular partial sums of multiple Fourier series of bounded functions

S. Galstyana, G. A. Karagulianb

a Yerevan State University
b Institute of Mathematics, National Academy of Sciences of Armenia
Full-text PDF (237 kB) Citations (3)
References:
Abstract: In this paper we establish the following results, which are the multidimensional generalizations of well-known theorems:
  • 1) Suppose that a function $f\in C(\mathbb T^m)$ has no intervals of constancy in $\mathbb T^m$; then there exists a homeomorphism $\varphi\colon\mathbb T^m\to\mathbb T^m$ such that the Fourier series of the superposition $F=f\circ\varphi$ is divergent with respect to rectangles almost everywhere;
  • 2) for any integrable function $f\in L^1(\mathbb T^m)$, with $|f(\mathbf x)|\geqslant\alpha>0$, $x\in\mathbb T^m$, there exists a signum function $\varepsilon(\mathbf x)=\pm 1$, $\mathbf x\in\mathbb T^m$ such that the Fourier series of the product $f(\mathbf x)\varepsilon(\mathbf x)$ is divergent with respect to rectangles almost everywhere.
Received: 21.11.1996
English version:
Mathematical Notes, 1998, Volume 64, Issue 1, Pages 20–30
DOI: https://doi.org/10.1007/BF02307192
Bibliographic databases:
UDC: 517
Language: Russian
Citation: S. Galstyan, G. A. Karagulian, “Divergence almost everywhere of rectangular partial sums of multiple Fourier series of bounded functions”, Mat. Zametki, 64:1 (1998), 24–36; Math. Notes, 64:1 (1998), 20–30
Citation in format AMSBIB
\Bibitem{GalKar98}
\by S.~Galstyan, G.~A.~Karagulian
\paper Divergence almost everywhere of rectangular partial sums of multiple Fourier series of bounded functions
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 1
\pages 24--36
\mathnet{http://mi.mathnet.ru/mzm1369}
\crossref{https://doi.org/10.4213/mzm1369}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1694010}
\zmath{https://zbmath.org/?q=an:0918.42005}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 1
\pages 20--30
\crossref{https://doi.org/10.1007/BF02307192}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078147600004}
Linking options:
  • https://www.mathnet.ru/eng/mzm1369
  • https://doi.org/10.4213/mzm1369
  • https://www.mathnet.ru/eng/mzm/v64/i1/p24
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:443
    Full-text PDF :207
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024