This article is cited in 3 scientific papers (total in 3 papers)
Integrability of the Majorants of Fourier Series and Divergence of the Fourier Series of Functions with Restrictions on the Integral Modulus of Continuity
Abstract:
We construct an example of a function from the class Hω∗1 , where ω∗(t)=√loglog(t−1)/log(t−1),
0<t⩽t0, whose trigonometric Fourier series is divergent almost everywhere. We obtain sharp integrability conditions for the majorants of the partial sums of trigonometric Fourier series in terms of whether the functions in question belong to the classes Hω1.
Citation:
N. Yu. Antonov, “Integrability of the Majorants of Fourier Series and Divergence of the Fourier Series of Functions with Restrictions on the Integral Modulus of Continuity”, Mat. Zametki, 76:5 (2004), 651–665; Math. Notes, 76:5 (2004), 606–619
\Bibitem{Ant04}
\by N.~Yu.~Antonov
\paper Integrability of the Majorants of Fourier Series and Divergence of the Fourier Series of Functions with Restrictions on the Integral Modulus of Continuity
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 5
\pages 651--665
\mathnet{http://mi.mathnet.ru/mzm136}
\crossref{https://doi.org/10.4213/mzm136}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2129332}
\zmath{https://zbmath.org/?q=an:1072.42003}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 5
\pages 606--619
\crossref{https://doi.org/10.1023/B:MATN.0000049660.29081.bc}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226356700002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-10344252851}
Linking options:
https://www.mathnet.ru/eng/mzm136
https://doi.org/10.4213/mzm136
https://www.mathnet.ru/eng/mzm/v76/i5/p651
This publication is cited in the following 3 articles:
N. Yu. Antonov, “Estimates for the growth order of sequences of multiple rectangular Fourier sums of integrable functions”, J. Math. Sci., 209:1 (2015), 1–11
S. V. Konyagin, “Almost everywhere divergence of lacunary subsequences of partial sums of Fourier series”, Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S99–S106
N. Yu. Antonov, “Almost Everywhere Divergent Subsequences of Fourier Sums of Functions from φ(L)∩Hω1”, Math. Notes, 85:4 (2009), 484–495