Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 76, Issue 5, Pages 666–674
DOI: https://doi.org/10.4213/mzm137
(Mi mzm137)
 

This article is cited in 2 scientific papers (total in 2 papers)

Optimal Set of the Modulus of Continuity in the Sharp Jackson Inequality in the Space $L_2$

E. E. Berdysheva
Full-text PDF (221 kB) Citations (2)
References:
Abstract: To a function $f\in L_2[-\pi,\pi]$ and a compact set $Q\subset[-\pi,\pi]$ we assign the supremum $\omega(f,Q) =\sup_{t\in Q}\|f(\,\cdot\,+t)-f(\,\cdot\,)\|_{L_2[-\pi,\pi]}$, which is an analog of the modulus of continuity. We denote by $K(n,Q)$ the least constant in Jackson's inequality between the best approximation of the function $f$ by trigonometric polynomials of degree $n-1$ in the space $L_2[-\pi,\pi]$ and the modulus of continuity $\omega(f,Q)$. It follows from results due to Chernykh that $K(n,Q)\ge1/\sqrt2$ and $K(n,[0,\pi/n])=1/\sqrt2$. On the strength of a result of Yudin, we show that if the measure of the set $Q$ is less than $\pi/n$, then $K(n,Q)>1/\sqrt2$.
Received: 24.10.2003
English version:
Mathematical Notes, 2004, Volume 76, Issue 5, Pages 620–627
DOI: https://doi.org/10.1023/B:MATN.0000049661.88696.b3
Bibliographic databases:
UDC: 517.518.834
Language: Russian
Citation: E. E. Berdysheva, “Optimal Set of the Modulus of Continuity in the Sharp Jackson Inequality in the Space $L_2$”, Mat. Zametki, 76:5 (2004), 666–674; Math. Notes, 76:5 (2004), 620–627
Citation in format AMSBIB
\Bibitem{Ber04}
\by E.~E.~Berdysheva
\paper Optimal Set of the Modulus of Continuity in the Sharp Jackson Inequality in the Space $L_2$
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 5
\pages 666--674
\mathnet{http://mi.mathnet.ru/mzm137}
\crossref{https://doi.org/10.4213/mzm137}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2129333}
\zmath{https://zbmath.org/?q=an:1070.41004}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 5
\pages 620--627
\crossref{https://doi.org/10.1023/B:MATN.0000049661.88696.b3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226356700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-10344259153}
Linking options:
  • https://www.mathnet.ru/eng/mzm137
  • https://doi.org/10.4213/mzm137
  • https://www.mathnet.ru/eng/mzm/v76/i5/p666
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024