Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 113, Issue 1, Pages 90–108
DOI: https://doi.org/10.4213/mzm13573
(Mi mzm13573)
 

This article is cited in 9 scientific papers (total in 9 papers)

Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer

S. G. Pyatkov, V. A. Baranchuk

Yugra State University, Khanty-Mansiysk
Full-text PDF (619 kB) Citations (9)
References:
Abstract: We study the Sobolev space well-posedness of inverse problems of determining the heat transfer coefficient contained in a Robin-type boundary condition for the convection-diffusion equations. We prove an existence and uniqueness theorem for the solutions.
Keywords: inverse problem, heat transfer coefficient, parabolic equation, heat and mass transfer, diffusion.
Funding agency Grant number
Russian Science Foundation 22-11-20031
This work was supported by the Russian Science Foundation and the Government of the Khanty-Mansiysk Autonomous Okrug-YUGRA under grant no. 22-11-20031.
Received: 03.05.2022
English version:
Mathematical Notes, 2023, Volume 113, Issue 1, Pages 93–108
DOI: https://doi.org/10.1134/S0001434623010108
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: S. G. Pyatkov, V. A. Baranchuk, “Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer”, Mat. Zametki, 113:1 (2023), 90–108; Math. Notes, 113:1 (2023), 93–108
Citation in format AMSBIB
\Bibitem{PyaBar23}
\by S.~G.~Pyatkov, V.~A.~Baranchuk
\paper Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer
\jour Mat. Zametki
\yr 2023
\vol 113
\issue 1
\pages 90--108
\mathnet{http://mi.mathnet.ru/mzm13573}
\crossref{https://doi.org/10.4213/mzm13573}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563351}
\transl
\jour Math. Notes
\yr 2023
\vol 113
\issue 1
\pages 93--108
\crossref{https://doi.org/10.1134/S0001434623010108}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85149995814}
Linking options:
  • https://www.mathnet.ru/eng/mzm13573
  • https://doi.org/10.4213/mzm13573
  • https://www.mathnet.ru/eng/mzm/v113/i1/p90
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024