|
This article is cited in 1 scientific paper (total in 1 paper)
Short Complete Diagnostic Tests for Circuits Implementing Linear Boolean Functions
K. A. Popkov Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
Abstract:
We prove that each of the Boolean functions $x_1\oplus\dots\oplus x_n$, $x_1\oplus\dots\oplus x_n\oplus 1$ can be implemented by a logic circuit in each of the bases $\{x\oplus y,1\}$, $\{x\&\overline y,x\vee y,\overline x\}$, $\{x\&y,x\vee y,\overline x\}$, allowing a complete diagnostic test of length not exceeding $\lceil\log_2(n+1)\rceil$ (for the first two bases) or not exceeding $n$ (for the third basis) relative to one-type stuck-at faults at outputs of gates. We also establish that each of the functions $x_1\oplus\dots\oplus x_n$, $x_1\oplus\dots\oplus x_n\oplus 1$ can be implemented by a logic circuit in the basis $\{x\oplus y,1\}$ allowing a complete diagnostic test of length not exceeding $\lceil\log_2(n+1)\rceil+1$ relative to arbitrary stuck-at faults at outputs of gates.
Keywords:
logic circuit, complete diagnostic test, stuck-at fault, linear Boolean function.
Received: 30.06.2022
Citation:
K. A. Popkov, “Short Complete Diagnostic Tests for Circuits Implementing Linear Boolean Functions”, Mat. Zametki, 113:1 (2023), 75–89; Math. Notes, 113:1 (2023), 80–92
Linking options:
https://www.mathnet.ru/eng/mzm13639https://doi.org/10.4213/mzm13639 https://www.mathnet.ru/eng/mzm/v113/i1/p75
|
Statistics & downloads: |
Abstract page: | 191 | Full-text PDF : | 20 | Russian version HTML: | 135 | References: | 36 | First page: | 5 |
|