Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 3, Pages 337–349
DOI: https://doi.org/10.4213/mzm13537
(Mi mzm13537)
 

This article is cited in 4 scientific papers (total in 4 papers)

Covering a Set by a Convex Compactum: Error Estimates and Computation

M. V. Balashov

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow
Full-text PDF (568 kB) Citations (4)
References:
Abstract: A problem related to that of finding the Chebyshev center of a compact convex set in $\mathbb R^n$ is considered, namely, the problem of calculating the center and the least positive ratio of a homothety under which the image of a given compact convex set in $\mathbb R^n$ covers another given compact convex set. Both sets are defined by their support functions. A solution algorithm is proposed which consists in discretizing the support functions on a grid of unit vectors and reducing the problem to a linear programming problem. The error of the solution is estimated in terms of the distance between the given set and its approximation in the Hausdorff metric. For the stability of the approximate solution, it is essential that the sets be uniformly convex and a certain set in the dual space has a nonempty interior.
Keywords: Chebyshev center, stability of minimization problem, Hausdorff metric, linear programming, support function.
Funding agency Grant number
Russian Science Foundation 22-11-00042
This work was supported by the Russian Science Foundation under grant 22-11-00042.
Received: 23.05.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 3, Pages 349–359
DOI: https://doi.org/10.1134/S0001434622090024
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: M. V. Balashov, “Covering a Set by a Convex Compactum: Error Estimates and Computation”, Mat. Zametki, 112:3 (2022), 337–349; Math. Notes, 112:3 (2022), 349–359
Citation in format AMSBIB
\Bibitem{Bal22}
\by M.~V.~Balashov
\paper Covering a Set by a Convex Compactum: Error Estimates and Computation
\jour Mat. Zametki
\yr 2022
\vol 112
\issue 3
\pages 337--349
\mathnet{http://mi.mathnet.ru/mzm13537}
\crossref{https://doi.org/10.4213/mzm13537}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538770}
\transl
\jour Math. Notes
\yr 2022
\vol 112
\issue 3
\pages 349--359
\crossref{https://doi.org/10.1134/S0001434622090024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85140582219}
Linking options:
  • https://www.mathnet.ru/eng/mzm13537
  • https://doi.org/10.4213/mzm13537
  • https://www.mathnet.ru/eng/mzm/v112/i3/p337
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025