Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 3, Pages 350–359
DOI: https://doi.org/10.4213/mzm13548
(Mi mzm13548)
 

This article is cited in 1 scientific paper (total in 1 paper)

Invertibility of the Operators on Hilbert Spaces and Ideals in $C^*$-Algebras

A. M. Bikchentaev

Kazan (Volga Region) Federal University
Full-text PDF (524 kB) Citations (1)
References:
Abstract: Let $\mathcal{H}$ be a Hilbert space over the field $\mathbb{C}$, and let $\mathcal{B}(\mathcal{H})$ be the $\ast$-algebra of all linear bounded operators in $\mathcal{H}$. Sufficient conditions for the positivity and invertibility of operators from $\mathcal{B}(\mathcal{H})$ are found. An arbitrary symmetry from a von Neumann algebra $\mathcal{A}$ is written as the product $A^{-1}UA$ with a positive invertible $A$ and a self-adjoint unitary $U$ from $\mathcal{A}$. Let $\varphi$ be the weight on a von Neumann algebra $\mathcal{A}$, let $A\in \mathcal{A}$, and let $\|A\|\le 1$. If $A^*A-I\in \mathfrak{N}_{\varphi}$, then $|A|-I\in \mathfrak{N}_{\varphi}$ and, for any isometry $U\in \mathcal{A}$, the inequality $\|A-U\|_{\varphi,2}\ge \||A|-I\|_{\varphi,2}$ holds. If $U$ is a unitary operator from the polar decomposition of the invertible operator $A$, then this inequality becomes an equality.
Keywords: Hilbert space, linear operator, invertible operator, von Neumann algebra, $C^*$-algebra, weight.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-882
This work was carried out within the framework of the Development Program of the Scientific and Educational Mathematical Center of the Volga Federal Region (agreement no. 075-02-2022-882).
Received: 15.04.2022
Revised: 16.05.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 3, Pages 360–368
DOI: https://doi.org/10.1134/S0001434622090036
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. M. Bikchentaev, “Invertibility of the Operators on Hilbert Spaces and Ideals in $C^*$-Algebras”, Mat. Zametki, 112:3 (2022), 350–359; Math. Notes, 112:3 (2022), 360–368
Citation in format AMSBIB
\Bibitem{Bik22}
\by A.~M.~Bikchentaev
\paper Invertibility of the Operators on Hilbert Spaces and Ideals in $C^*$-Algebras
\jour Mat. Zametki
\yr 2022
\vol 112
\issue 3
\pages 350--359
\mathnet{http://mi.mathnet.ru/mzm13548}
\crossref{https://doi.org/10.4213/mzm13548}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538771}
\transl
\jour Math. Notes
\yr 2022
\vol 112
\issue 3
\pages 360--368
\crossref{https://doi.org/10.1134/S0001434622090036}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85140650361}
Linking options:
  • https://www.mathnet.ru/eng/mzm13548
  • https://doi.org/10.4213/mzm13548
  • https://www.mathnet.ru/eng/mzm/v112/i3/p350
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:411
    Full-text PDF :167
    References:128
    First page:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024