Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 63, Issue 6, Pages 803–811
DOI: https://doi.org/10.4213/mzm1350
(Mi mzm1350)
 

Use of complex analysis for deriving lower bounds for trigonometric polynomials

A. S. Belov

Ivanovo State University
References:
Abstract: It is shown that for any distinct natural numbers $k_1,\dots,k_n$ and arbitrary real numbers $a_1,\dots,a_n$ the following inequality holds:
$$ -\min_x\sum_{j=1}^na_j\bigl(\cos(k_jx)-\sin(k_jx)\bigr) \ge B\biggl(\frac 1{1+\ln n}\sum_{j=1}^na_j^2\biggr)^{1/2}, \qquad n\in\mathbb N, $$
where $B$ is a positive absolute constant (for example, $B=1/8$). An example shows that in this inequality the order with respect ton, i.e., the factor $(1+\ln n)^{-1/2}$, cannot be improved. A more elegant analog of Pichorides' inequality and some other lower bounds for trigonometric sums have been obtained.
Received: 12.04.1997
English version:
Mathematical Notes, 1998, Volume 63, Issue 6, Pages 709–716
DOI: https://doi.org/10.1007/BF02312763
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. S. Belov, “Use of complex analysis for deriving lower bounds for trigonometric polynomials”, Mat. Zametki, 63:6 (1998), 803–811; Math. Notes, 63:6 (1998), 709–716
Citation in format AMSBIB
\Bibitem{Bel98}
\by A.~S.~Belov
\paper Use of complex analysis for deriving lower bounds for trigonometric polynomials
\jour Mat. Zametki
\yr 1998
\vol 63
\issue 6
\pages 803--811
\mathnet{http://mi.mathnet.ru/mzm1350}
\crossref{https://doi.org/10.4213/mzm1350}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1679212}
\zmath{https://zbmath.org/?q=an:0914.42001}
\transl
\jour Math. Notes
\yr 1998
\vol 63
\issue 6
\pages 709--716
\crossref{https://doi.org/10.1007/BF02312763}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000076726600022}
Linking options:
  • https://www.mathnet.ru/eng/mzm1350
  • https://doi.org/10.4213/mzm1350
  • https://www.mathnet.ru/eng/mzm/v63/i6/p803
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:596
    Full-text PDF :247
    References:84
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024