Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 63, Issue 6, Pages 812–820
DOI: https://doi.org/10.4213/mzm1351
(Mi mzm1351)
 

This article is cited in 6 scientific papers (total in 7 papers)

Linearity of metric projections on Chebyshev subspaces in $L_1$ and $C$

P. A. Borodin

M. V. Lomonosov Moscow State University
Full-text PDF (213 kB) Citations (7)
References:
Abstract: Let $Y$ be a Chebyshev subspace of a Banach space $X$. Then the single-valued metric projection operator $P_Y\colon X\to Y$ taking each $x\in X$ to the nearest element $y\in Y$ is well defined. Let $M$ be an arbitrary set, and let be a-finite measure on some $\sigma$-algebra $gS$ of subsets of $M$. We give a complete description of Chebyshev subspaces $Y\in L_1(M,\Sigma,\mu)$ for which the operator $P_Y$ is linear (for the space $L_1[0,1]$, this was done by Morris in 1980). We indicate a wide class of Chebyshev subspaces in $L_1(M,\Sigma,\mu)$, for which the operator $P_Y$ is nonlinear in general. We also prove that the operator $P_Y$, where $Y\subset C[K]$ is a nontrivial Chebyshev subspace and $K$ is a compactum, is linear if and only if the codimension of $Y$ in $C[K]$ is equal to 1.
Received: 13.05.1996
Revised: 05.03.1997
English version:
Mathematical Notes, 1998, Volume 63, Issue 6, Pages 717–723
DOI: https://doi.org/10.1007/BF02312764
Bibliographic databases:
UDC: 517.982.256
Language: Russian
Citation: P. A. Borodin, “Linearity of metric projections on Chebyshev subspaces in $L_1$ and $C$”, Mat. Zametki, 63:6 (1998), 812–820; Math. Notes, 63:6 (1998), 717–723
Citation in format AMSBIB
\Bibitem{Bor98}
\by P.~A.~Borodin
\paper Linearity of metric projections on Chebyshev subspaces in $L_1$ and $C$
\jour Mat. Zametki
\yr 1998
\vol 63
\issue 6
\pages 812--820
\mathnet{http://mi.mathnet.ru/mzm1351}
\crossref{https://doi.org/10.4213/mzm1351}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1679213}
\zmath{https://zbmath.org/?q=an:0917.41018}
\transl
\jour Math. Notes
\yr 1998
\vol 63
\issue 6
\pages 717--723
\crossref{https://doi.org/10.1007/BF02312764}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000076726600023}
Linking options:
  • https://www.mathnet.ru/eng/mzm1351
  • https://doi.org/10.4213/mzm1351
  • https://www.mathnet.ru/eng/mzm/v63/i6/p812
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:561
    Full-text PDF :252
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024